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ABSTRACT

Climate change increases the frequency and severity of natural disasters, creating a need for
accurate classification systems to support humanitarian response. Recent advances in artificial
intelligence (AI) offer potential solutions. This study investigates two approaches to improving
disaster image classification in crisis informatics: 1) a custom pipeline using generative AI for
synthetic data augmentation to fine-tune convolutional neural networks (CNNs), and 2) direct
zero-shot classification using large pre-trained multimodal models. The former represents a
specialised technical approach, while the latter leverages general-purpose foundation models.
Using the MEDIC crisis informatics dataset (70,000+ images), we replicated published CNN
baselines across three architectures. Data preparation revealed performance gaps linked to
labelling errors in the original dataset. To address this and prepare for reliable data augmenta-
tion, we implemented and validated a conservative committee-based relabelling method—using
CNNs and large language models (LLMs)—, which relabelled 5% of the total data. This signif-
icantly improved baseline performance on challenging classes (e.g., ‘mild damage’ F1 rose from
15.4% to 35.8% for EfficientNet-B1).
Our main experiments first evaluated our synthetic data augmentation pipeline, which uses
LLM-generated captions to generate new images with diffusion models. This approach yielded
only modest performance improvements for fine-tuned CNNs, even with targeted data gen-
eration strategies. Conversely, zero-shot classification using large multimodal models (e.g.,
GPT-4o) achieved higher accuracy and comparable or significantly higher F1 scores across
multiple tasks than the best fine-tuned CNNs, requiring no task-specific tuning. The F1 ad-
vantage was particularly pronounced for ambiguous categories (‘mild damage’ F1: 61% vs 36%;
‘other disaster’ F1: 57% vs 24%), though F1 scores for some other tasks decreased.
In conclusion, while targeted synthetic data augmentation shows some promise for heteroge-
neous crisis informatics datasets, our findings reveal a significant, underexplored potential in
the use of off-the-shelf large multimodal models as zero-shot classifiers. These results indi-
cate that such foundation models could become key components in future crisis informatics
classification systems.

Keywords: crisis informatics, image classification, deep learning,
data augmentation, zero-shot classification, generative AI
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Chapter 1

Introduction

1.1 Motivation
Climate change is leading to increasingly intense natural disasters, posing significant challenges
for disaster response and humanitarian aid. For mitigation and relief efforts to be effective,
accurate and timely information about incident types, locations, and scales is essential. Within
the field of crisis informatics, image classification is crucial to automated systems that mon-
itor social media during crises (Alam et al., 2023). Such systems collect images and metadata,
creating detailed snapshots of ongoing situations, assessing severity levels, and identifying hu-
manitarian needs. These tools are vital for maintaining situational awareness, planning re-
sources effectively, and optimising response efforts.

Recent advances in foundation models and generative artificial intelligence (AI) have created
multiple pathways to improve crisis informatics systems. Advanced image generation models
such as Stable Diffusion (Esser et al., 2024) can now produce photorealistic outputs with high
adherence to text prompts, making them viable tools for data augmentation in disaster contexts
where labelled images are scarce or their usage raises ethical issues. Simultaneously, large mul-
timodal (vision and language) models such as OpenAI’s gpt-4o (OpenAI, 2024) or Anthropic’s
Claude 3.5 series (Anthropic, 2024), which can process and reason across both images and text,
offer powerful off-the-shelf (‘zero-shot’) image classification capabilities, potentially bypassing
established pipelines for image analysis, traditionally reliant on Convolutional Neural Networks
(CNNs; Krizhevsky et al., 2012).

1.2 Research Problem and Significance
Traditional disaster image classification relies heavily on supervised machine learning tech-
niques. Typically, these methods require extensive annotated datasets and often struggle when
encountering novel disaster contexts or new classes (Mumuni and Mumuni, 2022). Modern
generative AI approaches, however, offer promising alternatives to these limitations.

Specifically, two distinct methods stand out:
1. Synthetic data augmentation with advanced image generative models extends existing

classification methods by artificially creating additional training examples, producing
high-quality images which can be used to improve class balance and data diversity with
fewer ethical issues than real disaster images.
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2. Zero-shot classification with large multimodal models allows models to categorise images
into classes they have not been explicitly trained on, using transferable knowledge from
their pretraining. This approach entirely bypasses existing pipelines, potentially enabling
the classification of previously unseen disaster categories without explicit fine-tuning (Ko-
jima et al., 2022; Pratt et al., 2023).

The significance of improving disaster image classification lies in enhancing the effective-
ness of response operations, ensuring better resource allocation, and ultimately saving lives and
property.

This project explores two complementary paths to improve image classification in crisis in-
formatics using modern generative AI techniques: (1) synthetic data augmentation for CNN
fine-tuning and (2) zero-shot classification with large multimodal models, as we explain in
the rest of this chapter.

1.3 Research Questions and Objectives

As mentioned above, the aim of the project is to explore and compare two distinct paths to
improve image classification in crisis informatics: synthetic data augmentation and zero-shot
classification. We will measure success empirically by comparing our disaster-related image
classification performance to the MEDIC dataset benchmarks (Alam et al., 2023), detailed in
Chapter 2.3. Our objectives and associated research questions are outlined below in Table 1.1.

Table 1.1: Research Objectives and Corresponding Research Questions.

Objective Research Question

Investigate synthetic data augmentation
for CNNs in crisis informatics, generating
additional training samples with advanced
image generation models.

RQ1: Does synthetic data augmentation us-
ing advanced image generation models help im-
prove CNN performance for disaster image clas-
sification (MEDIC benchmark), compared to
baseline?

Evaluate zero-shot classification with large
multimodal models for crisis informatics
image classification, establishing perfor-
mance with no task-specific training.

RQ2: Can large multimodal models achieve
competitive zero-shot classification perfor-
mance on the MEDIC dataset compared to
CNN benchmarks?

Comparing these approaches highlights important tradeoffs between traditional approaches
with higher implementation complexity and control (synthetic data with CNNs) versus simplic-
ity but potential reliance on external black-box dependencies (zero-shot with possibly propri-
etary pretrained models), providing practical guidance for crisis response teams with varying
technical resources and deployment constraints. Thus, the primary contribution of this
project lies in the novel implementation, empirical evaluation, and comparison of these two
distinct approaches for leveraging modern generative AI for disaster image classification.
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1.4 Structure and Overview
This report is organised as follows:

• Chapter 1 introduces the context, research objectives, and significance of the study.
• Chapter 2 provides an overview of crisis informatics, the MEDIC dataset, and relevant

literature on both synthetic data generation and zero-shot classification. It concludes by
identifying the research gap and our contributions, and a section on ethical consid-
erations.

• Chapter 3 outlines our general methodology, including experimental setup and evaluation
frameworks.

• Chapter 4 describes the CNN baseline experiments.
• Chapter 5 outlines the need for relabelling the MEDIC dataset and presents the method-

ology and results.
• Chapter 6 details the synthetic data augmentation pipeline, the associated experimental

design and results.
• Chapter 7 presents the methodology and results for zero-shot classification with large

multimodal models.
• Chapter 8 concludes with a comparative analysis, summary of contributions, practical

implications, limitations and future research directions.
• Appendices A to E contain supporting analyses, supplementary tables, prompts, example

images and model details.
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Chapter 2

Background and Related Work

In this chapter, we review work in image classification in crisis informatics and more broadly,
from traditional approaches involving Convolutional Neural Networks (CNNs) to large multi-
modal models and advanced synthetic data generation, with the goal of identifying opportu-
nities to combine these approaches for disaster imagery classification. We then identify the
research gap in the literature and list our contributions. The chapter concludes with a section
on ethical considerations, an essential part of data science and particularly crisis informatics.

2.1 Crisis Informatics and Disaster Response
Machine learning plays an increasingly vital role in disaster response, powering applications
such as real-time event detection (Alam et al., 2022), situational awareness from social media
(Nguyen et al., 2017; Yao et al., 2020; Bukar et al., 2022), and damage assessment from aerial
or satellite imagery (Hamdi et al., 2019; Duarte et al., 2018; Braik and Koliou, 2024). Models
must deliver results under strict time constraints and often on limited computational resources
available in the field, with accuracy often sacrificed for the sake of speed (Gholami et al., 2022).

Another challenge is the sheer volume and variety of data during disasters. Social media,
satellite, and drone platforms generate an overwhelming number of images in real time (Alam
et al., 2022). The need for automated image classification has therefore grown (Kumar and
others, 2020), enabling authorities to parse millions of images for signs of damage or people in
need. However, models trained on academic benchmarks often struggle to generalise
to such real-world data streams: there is a notable gap between curated research datasets and
the noisy, evolving visual data from actual crises (Weber et al., 2023).

2.2 Traditional Approaches to Disaster Image Classifi-
cation

Pre-trained convolutional neural networks (CNNs; Krizhevsky et al., 2012) like VGG16, ResNet,
and DenseNet remain the workhorses of disaster image classification. Studies often fine-tune
these ImageNet-trained models on disaster datasets, leveraging transfer learning to recognise
disaster-related features (type of disaster, damage severity) in photographs. CNNs achieve
strong baseline performance on disaster-related image datasets like CrisisMMD and AIDR
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(Alam et al., 2018, 2023; Imran et al., 2014). For example, on the CrisisMMD image set, CNNs
achieved high F1 scores of ∼ 84% and ∼ 78% on the ‘informativeness’ and ‘humanitarian’
classification tasks, respectively (Alam et al., 2018).

Traditional CNN methodologies have been further developed by incorporating techniques
such as multi-scale analysis to capture both broad context and fine details (Zhang et al.,
2024). Other approaches involve using intermediate steps like semantic segmentation or object
detection to enrich features (Rahnemoonfar et al., 2023; Kyeongjin et al., 2024), and integrating
multimodal data (e.g., text and images from social media) to help clarify visual content using
associated context (Zou et al., 2021; Islam et al., 2024). The key question asked in this project
is the role of these traditional or hybrid CNN-based approaches in light of the advances in
modern generative modelling, as we describe later in this chapter.

2.3 The MEDIC Dataset
In machine learning, progress in a field is often defined—and spurred—by quantitative im-
provements on a keystone benchmark dataset and associated tasks. The Multitask Emergency
Dataset for Crisis Informatic (MEDIC) dataset (Alam et al., 2023) is currently the largest social
media disaster image dataset, comprising 71,198 images annotated for four interrelated human-
itarian classification tasks: disaster type, informativeness, humanitarian category, and damage
severity. MEDIC consolidates previous datasets like CrisisMMD (Alam et al., 2018), AIDR
(Imran et al., 2014), and DMD (Mouzannar et al., 2018), significantly advancing their scale
and operational relevance compared to broad incident-detection datasets such as Incidents1M
(Weber et al., 2023) or aerial datasets like xView2 (Defense Innovation Unit, 2019).

The MEDIC dataset lies at the core of this project and we will regularly refer back to
it. Despite its advantages, MEDIC faces challenges including moderate annotation noise from
crowdsourced labels and considerable class imbalance, limiting classifier performance (Alam
et al., 2023; Eltehewy et al., 2023), topics which we will revisit in the following chapters.

2.4 Foundation Models in Computer Vision
Recent years have seen the rise of foundation models in computer vision—large-scale models
trained on enormous datasets that can be adapted to a wide range of tasks. Notable ex-
amples include vision-language models like CLIP (Contrastive Language–Image Pre-training),
generative image models like Stable Diffusion, multimodal transformers such as BLIP, and mul-
timodal variants of large language models (e.g., GPT-4o; OpenAI, 2024). These models are
characterised by their ability to perform zero-shot or few-shot learning, meaning they can recog-
nise new concepts without explicit task-specific training, by leveraging their broad knowledge
learned during pre-training (Scheele et al., 2024).

Vision-language models (VLMs) like CLIP are particularly relevant for image classification.
CLIP was trained on 400 million image–text pairs to align image embeddings with text embed-
dings in a shared space enabling classification of images using simple textual prompts without
the need for traditional retraining—a form of zero-shot classification (Scheele et al., 2024). This
zero-shot ability often rivals or surpasses fully supervised baselines on datasets it has never seen
(Radford et al., 2021).
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Meanwhile, multimodal large language models have emerged, which can accept image inputs
in addition to text, such as with GPT-4o (OpenAI, 2024). However, models with state-of-
the-art vision capabilities are often proprietary and very computationally intensive, and their
outputs are not easily reproducible or benchmarked in the same way as traditional classifiers.

Foundation models have been applied in various specialised domains. In medical imaging,
researchers proved that a CLIP-based model achieved radiologist-level zero-shot classification
of pathologies on chest X-rays (Mishra et al., 2023), despite never being explicitly trained. In
traffic incident detection, vision-language models are being explored to identify accidents from
traffic camera footage using textual cues (Zhang et al., 2025).

Less work has been done in disaster informatics, but early experiments have used foundation
models to classify disaster images. For example, the LADI-v2 project (Scheele et al., 2024)
compared a baseline ResNet to vision-language models for classifying aerial disaster photos.
Interestingly for our project, they found that a fine-tuned ResNet still outperformed
open-source VLMs on that specialised aerial dataset—a foundation model pre-trained
on internet images may not immediately excel on drone imagery of hurricane damage without
adaptation. This is known as domain shift – if the distribution of target data differs significantly
from the model’s training data, performance can degrade (Dunlap et al., 2023).

2.5 Synthetic Data Generation
Data augmentation is a traditional approach to improve model performance by artificially ex-
panding a training dataset by applying transformations such as rotation, flipping and cropping
to existing images. Recent advances in generative models have enabled synthetic data augmen-
tation beyond simple transformations. Earlier generative approaches mostly employed Genera-
tive Adversarial Networks (GANs; Goodfellow et al., 2014), and studies across domains showed
that augmenting training data with synthesised images can improve classification accuracy by
oversampling minority classes with realistic examples (Figueira and Vaz, 2022).

Diffusion models, which generate images by gradually denoising random patterns into co-
herent visuals based on text descriptions, are a newer family of generative models achieving
state-of-the-art image fidelity. They have spurred interest in augmenting image datasets for
training classifiers, primarily in medical fields, often by first fine-tuning a pre-trained diffusion
model on a specific medical dataset (Alimisis et al., 2025). Similar to earlier attempts, the com-
mon application consists of generating synthetic examples for specific target classes to improve
class balance, yielding improved accuracy on various benchmarks (Shao et al., 2024).

Related to the aims of this project, Dunlap et al. (2023) created ALIA, a generic framework
for automatically generating descriptive captions using a language model and then using those
captions with Stable Diffusion to produce variant images. Similarly, recent work by Yu et al.
(2025) showed how using an off-the-shelf image generation model to increase dataset size and
diversity improves performance of an image classifier on ImageNet, with no need to first fine-
tune the diffusion model to ImageNet itself.

Synthetic data generation has also been applied in crisis informatics, albeit to a limited
extent. Rui et al. (2021) developed a GAN-based approach to produce multi-disaster remote
sensing images, alleviating class imbalance in building-damage classification. Eltehewy et al.
(2023) combined GAN-synthesised disaster images with real data, resulting in improved clas-
sification accuracy (∼11% boost over baseline). Similarly, synthetic flood scenarios have been
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used to train flood detectors with performance comparable to those trained on real images
(Kang et al., 2025), and diffusion-generated images have improved models’ ability to recognise
fire and smoke under various conditions (Park and Lee, 2024).

2.6 Research Gap and Contributions
A persistent challenge across crisis imagery datasets is severe class imbalance, driven by diffi-
culties and ethical constraints in collecting sufficient real-world data (Eltehewy et al., 2023).
Standard CNNs often perform well on dominant classes but struggle significantly with rare
event categories. Traditional augmentation methods, including geometric transformations and
oversampling techniques, provide limited diversity and fail to adequately account for domain
shifts, restricting generalisability and robustness (Alimisis et al., 2025).

Our review of the literature shows that diffusion-based data augmentation, despite promis-
ing early results in other domains (Shao et al., 2024; Yu et al., 2025), remains under-explored in
the field of disaster image classification. Moreover, the effectiveness demonstrated by large mul-
timodal models in few-shot or even zero-shot tasks, though with limitations (e.g., Scheele et al.,
2024), begs the question of whether traditional CNN-based approaches are still needed. Such
a comparison has never been directly performed in the context of disaster image classification
and remains an open question in the field.

Our research specifically addresses these gaps through the following key contributions:
• We introduce and assess a pipeline using off-the-shelf diffusion models and LLM-generated

prompts for synthetic data augmentation on the multi-task MEDIC dataset, aiming to
mitigate class imbalance and enhance data diversity without requiring diffusion model
fine-tuning.

• We conduct the first direct comparison in disaster image classification between CNNs fine-
tuned with our synthetic data pipeline and the zero-shot performance of large multimodal
foundation models on the same benchmark tasks.

Validating these techniques on a heterogeneous dataset like MEDIC would demonstrate their
broader applicability, providing practitioners a practical tool to enhance predictive performance
amid rapidly evolving crisis scenarios.
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2.7 Ethical Considerations

2.7.1 Privacy and Data Protection
The MEDIC dataset contains images uploaded to social media platforms under varying degrees
of user consent. Individuals depicted in these images did not necessarily anticipate that their
content would form part of a research corpus. To mitigate potential privacy violations and
avoid re-identification risks, all real images from the MEDIC dataset will be deleted at the
end of this project. Only the metadata and derived features (e.g., embeddings) essential for
the analysis will be retained. At no point in this study are there attempts to identify specific
individuals or locations. We do not annotate images with personally identifiable information,
and all analyses remain at the aggregate level.

2.7.2 Synthetic Imagery and Misinformation
The rise of high-fidelity generative models makes it increasingly easy to create or alter images
that appear authentic. While synthetic data can improve model robustness—especially for
underrepresented disaster classes—it carries the risk of fuelling misinformation if misapplied.
To address this, we will only share the synthetic dataset with trusted parties who have justified
use cases, such as academic researchers or humanitarian organisations. Further, our approach
to text-to-image generation avoids producing distressing content beyond the scope of legitimate
disaster scenarios. Fallback prompts ask the AI to ‘tone down’ anything that becomes graphic
or borders on sensationalism (Section 6.2).

2.7.3 Bias and Fairness
Generative models inherit biases from their training data, which is often skewed towards
certain geographic regions, socio-economic groups, or disaster types. Consequently, synthetic
data may perpetuate or even amplify such biases. Our original dataset is already extremely
diverse in terms of geography and situations. We further this diversity by attempting to
generate even broader synthetic samples that may generalise to new scenarios. We implement
“diversity” keyword strategies to capture a broad, equitable range of disaster contexts without
sensationalising human suffering (Section 6.2).

2.7.4 AI Safety and Accountability
Applications of AI in crisis informatics have far-reaching societal implications, including life-
or-death decisions about resource allocation or evacuation. Even small errors in classification
can exacerbate vulnerabilities. Hence, we adopt the following safety practices:

1. Human-in-the-Loop: We emphasise that automated classification outputs must be veri-
fied by human experts before informing critical decisions. The final deployment of any
model in a disaster-response context should embed safety checks.

2. Traceability: Our data processing and model training pipelines are documented in de-
tail, enabling reproducibility and auditing. Traceability helps stakeholders understand,
replicate, and, if necessary, contest the model’s outputs.
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Chapter 3

General Methodology

This chapter outlines our approach to investigating image classification improvements in crisis
informatics through both synthetic data augmentation and zero-shot classification methods.
The code used for this project is publicly available and open-sourced in the following GitHub
repository: https://github.com/evammun/genai-data-aug-disasters.

3.1 Methodological Overview
The project follows a multi-stage methodology, where each step corresponds to a chapter of
this report:

1. Establishing CNN baselines on the standard MEDIC dataset (Alam et al., 2023) and
analysing their performance limitations (Chapter 4).

2. Addressing identified data quality issues through a systematic, conservative relabelling
process (Chapter 5).

3. Developing and evaluating a synthetic data augmentation pipeline to fine-tune CNNs,
aiming to improve performance on challenging classes (RQ1, Chapter 6).

4. Implementing and assessing a zero-shot classification approach using large multimodal
models (LMMs), bypassing traditional training pipelines (RQ2, Chapter 7).

3.2 Dataset and Preparation

3.2.1 MEDIC Dataset
Our experiments utilise the MEDIC dataset (Alam et al., 2023), introduced in Section 2.3. The
dataset contains 71,198 social media images annotated across four distinct classification tasks:
disaster type, informativeness, humanitarian category, and damage severity. The images are
divided in a training set (49,353), validation set (6,157) and test set (15,688).

3.2.2 Dataset Relabelling
Initial baseline analyses (Chapter 4) indicated potential label noise impacting performance,
particularly for ambiguous categories like mild damage severity or other disaster. To establish
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a more robust ground truth for evaluating our primary research questions, we implemented a
conservative relabelling procedure (detailed in Chapter 5). This involved identifying images
where multiple baseline CNNs disagreed with the original label, followed by independent verifi-
cation using two large multimodal models (GPT-4o and Claude Sonnet 3.5) as unbiased judges.
Approximately 5% of the dataset labels were revised through this process. All subsequent ex-
periments, including synthetic data augmentation and zero-shot evaluation, were performed
using this relabelled version of the MEDIC dataset unless otherwise noted.

3.3 Evaluation Framework
For CNNs trained in a multi-task setting, the model simultaneously predicts labels for all four
tasks. Training optimises a combined loss function based on the sum of cross-entropy losses for
each task (unweighted; see Appendix A.1). For zero-shot classification with large multimodal
models, models are prompted to return valid JSON with a label for each task (see Appendix E).

Performance is assessed using standard classification metrics: accuracy, macro-averaged F1
score (to account for class imbalance), and per-class F1 scores (detailed in Appendix A.2). We
often employ confusion matrices to diagnose error patterns (Chapter 6, 7).

3.4 Experimental Pipeline
Our investigation proceeds through the following experimental stages:

1. CNN Baseline Implementation (Chapter 4): We first replicate and analyse the
performance of standard CNN architectures (ResNet50, EfficientNet-B1, MobileNet-V2)
fine-tuned on the original MEDIC dataset, following the methodology of Alam et al.
(2023). This establishes benchmark performance and highlights limitations, motivating
the relabelling (Chapter 5) and subsequent experiments.

2. Synthetic Data Generation and Augmentation (RQ1, Chapter 6) After prelim-
inary experiments to determine the best setup, we develop a pipeline using LLMs to
generate captions and diffusion models to synthesise diverse disaster images. These im-
ages augment the relabelled training set, targeting underperforming or critical classes.
We then fine-tune the CNN models on this augmented dataset and evaluate performance
changes.

3. Zero-Shot Classification with Multimodal Models (RQ2, Chapter 7) We eval-
uate the ability of off-the-shelf large multimodal models to perform the MEDIC classifi-
cation tasks without any task-specific training (‘zero-shot’). This involves querying the
model with test images and an optimised prompt engineered through preliminary testing
on a smaller validation set. Performance is compared directly against the fine-tuned CNN
benchmarks.

3.5 Experimental Setup and Implementation Details
Local experiments were primarily conducted using an NVIDIA RTX 3070 GPU for training/fine-
tuning. Our optimised CNN training pipeline, leveraging NVIDIA DALI for data loading,
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achieved significant speedups (7-18× faster per epoch) compared to reference implementations
(Table 3.1). For full reproducibility, the complete hardware and software configuration is pro-
vided in Appendix A.3 and A.4. Experiment-specific details are provided in the following
chapters and associated appendices.

Table 3.1: Comparison of Training Times.

Model Alam et al. (2023) Our Setup with CUDA/DALI Speedup/EpochTime (hrs) Epochs Time (hrs) Epochs
EfficientNet-B1 74.22 150 2.778 39 6.97×
MobileNet-V2 76.67 150 1.111 39 18.25×
ResNet50 77.60 150 1.667 24 7.49×
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Chapter 4

CNN Baseline

To create a reliable reference point for our experiments, we first replicated the baseline Convo-
lutional Neural Network (CNN) training methodology described by Alam et al. (2023). This
process involves fine-tuning pretrained CNN models on the MEDIC dataset (Alam et al., 2023).
This chapter describes the methodology, the findings from our replication study, and our in-
depth analyses that hint at potential issues with the MEDIC dataset itself.

4.1 Baseline CNN Methodology
Our experimental setup follows Alam et al. (2023) as accurately as possible, according to the
available information in the published papers. The goal is to fine-tune pre-trained CNNs on
the MEDIC dataset to perform multi-task classification across four distinct categories: disaster
type, informativeness, humanitarian category, and damage severity. The core parameters and
components of this baseline methodology are summarised below in Table 4.1.

Table 4.1: Baseline CNN Architectures and Hyperparameters Replicating Alam et al. (2023).

Parameter Details

Base Architectures ResNet50, EfficientNet-b1, MobileNet-v2 (pretrained)
Output Heads 4 separate linear logits heads (one per task: disaster type,

informativeness, humanitarian category, and damage severity)
Optimiser Adam
Initial Learning Rate 1 × 10−5

Learning Rate Schedule Reduce to 1 × 10−6 if validation loss does not improve for 10
epochs (initial patience)

Training Termination Stop training if validation loss does not improve for a further
10 epochs (final patience)

Model Selection Epoch yielding the highest F1 score on the validation set
Batch Size 32
Loss Function Sum of Cross-Entropy losses for each task (equally weighted)

For our replication experiments, we focused on three base CNN architectures highlighted
in Alam et al. (2023) as top performers for varying model sizes: ResNet50, EfficientNet-b1,
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and MobileNet-v2. For each architecture, the pretrained model from PyTorch was adapted
by replacing the final classification layer with four separate linear heads outputting logits for
each classification task. This modification allows a single forward pass through the network to
generate predictions for all four MEDIC tasks simultaneously.

As an efficiency enhancement over standard CPU-based methods, for this project we imple-
mented a custom-written NVIDIA DALI pipeline to efficiently handle image loading, decoding,
and normalisation for optimal GPU utilisation. The multi-task labels were initially encoded
as a single integer and subsequently unpacked into four distinct task labels during the training
process.

This established baseline serves as the benchmark against which the effectiveness of sub-
sequent data relabelling (Chapter 5) and synthetic data augmentation techniques (Chapter 6)
will be measured.

4.2 Baseline Results and Failure Analysis
Each of our three CNN architectures reaches performance levels very close to those reported by
Alam et al. (2023). Table 4.2 summarises the overall Accuracy and F1 scores for each of the four
classification tasks (left column) and the same metrics for the original MEDIC study (right)
for EfficientNet-b1, confirming that our re-implementation broadly reproduces the published
results. Full results are reported in Appendix B.1.

Task Metric Our Impl. MEDIC (Alam et al., 2023)

Disaster Types Accuracy 81.9% 81.4%
F1 80.2% 79.8%

Informativeness Accuracy 88.6% 88.6%
F1 88.6% 88.6%

Humanitarian Accuracy 85.0% 84.6%
F1 84.6% 84.3%

Damage Severity Accuracy 83.1% 82.9%
F1 80.6% 80.8%

Table 4.2: Comparison of Baseline EfficientNet-b1 Performance with Original MEDIC Benchmarks.

While the global classification results look reasonably good, it is important to understand
the exact failure modes of the CNNs. In the rest of this section, we study the classification
results in detail and eventually surface potential issues with the dataset.

4.2.1 Class-Level Results
Accuracy and F1 scores at the class level for each model are reported in Table 4.3. Some
representative findings:

• Damage Severity: The none category is classified correctly at a high rate (F1 ≈ 91%),
whereas mild is a challenging label, with F1 generally <20%. The confusion matrices
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(Figure 4.1) show that mild-damage images are frequently over-predicted as either none
or severe, suggesting subtle visual cues that the network struggles to capture.

• Humanitarian Category: While not humanitarian is recognised with >90% F1, the
classes rescue/volunteering and affected/injured have F1 ≈ 40–50%. This indicates that
scenes of injuries, donation efforts, or volunteers are visually heterogeneous, making them
harder to learn from relatively sparse training examples.

• Disaster Type: The none label (i.e., non-disaster images) is predicted accurately in
most cases. However, other disaster is commonly misclassified, partly because it is a
broad catch-all category. Some images labelled other disaster are similar to more common
Disaster Types (e.g. floods), causing confusion in the model.

• Informativeness: The model distinguishes informative from not informative with high
accuracy and F1 (≈ 87–89%). Instances of misclassification typically involve ambigu-
ous content where the presence of disaster-related information is subtle (e.g., an image
containing only textual overlays or vague scenes).

Confusion Matrix Analysis

Figure 4.1 presents the confusion matrix for the four classification tasks for EfficientNet-B1,
the best-performing CNN.

Informative
Predicted

True not inf inf

not inf .88 .11
inf .12 .87

Disaster Types
Predicted

True quake fire flood hurr. land. none other

quake .79 .01 .00 .03 .01 .12 .00
fire .03 .82 .01 .01 .0 .11 .00

flood .01 .00 .78 .03 .01 .14 .00
hurr. .09 .01 .07 .59 .01 .19 .00
land. .09 .01 .03 .06 .67 .12 .00
none .01 .00 .01 .02 .00 .94 .00
other .20 .05 .03 .12 .01 .46 .10

Damage Severity
Predicted

True none mild severe

none .94 .00 .05
mild .40 .05 .54

severe .15 .01 .83

Humanitarian
Predicted

True injured infra not hum rescue

injured .32 .27 .33 .05
infra .01 .84 .13 .01

not hum .00 .06 .91 .01
rescue .06 .27 .31 .35

Figure 4.1: Confusion matrices for EfficientNet-b1 using the baseline CNN training.
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Table 4.3: Performance comparison of CNN architectures.

Accuracy (%) F1 Score (%)

Task/Class RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2

Damage Severity 82.7% 83.1% 81.9% 79.6% 80.6% 78.9%
Little Or None 88.3% 89.2% 87.6% 91.3% 91.9% 90.7%
Mild 90.0% 89.9% 90.1% 9.3% 15.4% 9.8%
Severe 87.1% 87.1% 86.1% 76.3% 76.4% 75.0%

Informative 88.2% 88.6% 87.1% 88.2% 88.6% 87.2%
Not Informative 88.2% 88.6% 87.1% 89.1% 89.2% 87.8%
Informative 88.2% 88.6% 87.1% 87.2% 87.9% 86.4%

Humanitarian 84.4% 85.0% 83.6% 83.6% 84.6% 82.4%
Affected/Injured People 96.4% 96.2% 96.2% 42.4% 47.3% 43.6%
Infrastructure Damage 88.6% 89.2% 87.7% 83.1% 84.3% 82.4%
Not Humanitarian 87.9% 88.8% 87.4% 89.8% 90.4% 89.3%
Rescue/Volunteering 95.9% 95.7% 95.9% 42.6% 44.0% 26.3%

Disaster Types 80.8% 81.9% 79.4% 78.6% 80.2% 76.6%
Earthquake 94.1% 94.3% 93.6% 75.5% 76.6% 74.1%
Fire 98.2% 98.1% 97.7% 79.7% 79.4% 74.8%
Flood 96.4% 96.8% 96.4% 78.2% 81.1% 78.4%
Hurricane 93.0% 93.2% 92.6% 62.5% 65.3% 60.7%
Landslide 98.6% 98.6% 98.5% 67.6% 69.0% 66.1%
Not Disaster 88.1% 89.4% 87.3% 90.0% 90.9% 89.3%
Other Disaster 93.2% 93.5% 92.8% 18.9% 26.2% 5.3%

RN50: ResNet50, EN-B1: EfficientNet-B1, MN-V2: MobileNet-V2

Performance comparison of CNN architectures. The table shows metrics for each classification task and class.
For tasks (in bold), accuracy represents multi-class classification performance across all classes, while F1 score
is the weighted average across classes. For individual classes, accuracy shows binary classification performance
(how well the model distinguishes that class from all others), and F1 score measures the harmonic mean of
precision and recall for that specific class. The best performing score in each row is highlighted in green.
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1. Damage Severity: Mild images regularly migrate into the none or severe bins. Visual
inspection of images suggests that mild damage can be subtle (e.g., small cracks or limited
debris), so the network either detects no visible damage or infers an evidently severe scene.

2. Informativeness: The distinction between informative and not informative is mostly
clear. However, text-heavy images or partial views of crowds with no clear context occa-
sionally lead to misclassifications, indicating an underlying semantic ambiguity.

3. Humanitarian Categories: Misclassifications between affected/injured and infrastruc-
ture damage often occur, implying that images capturing both people in distress and
damaged buildings can confuse the model. Additionally, rescue is sometimes predicted
as not humanitarian if the scene does not overtly show rescue equipment or volunteers in
uniform.

4. Disaster Types: Large-scale events like landslides, floods and hurricanes share visual
similarities (e.g., water inundation vs. wind damage), and the broad other disaster label
suffers from insufficiently distinct features. That category is typically misclassified as
more common types—especially quake, hurricane, or none—whenever the image lacks
strong visual cues.

4.2.2 Problematic Classes and Patterns
A closer, class-by-class look at the results highlights several underrepresented and highly
confused labels that systematically degrade performance. Table 4.4 (below) compiles aggre-
gated frequency and performance metrics (F1, Precision, Recall) for all classes across our three
baseline CNNs (ResNet50, EfficientNet-b1, and MobileNet-v2).

Underrepresented Classes and Imbalance Effects. From Table 4.4 we see that classes
with a lower share of the dataset (e.g., landslide at 2%, hurricane at 10%, mild damage at 10%,
rescue volunteering at 4%) typically see poorer F1 scores.

However, imbalance is not the sole factor: the other disaster label, which has a modest
7% share, can achieve strong precision (e.g., up to 79.4%) but simultaneously suffers recall as
low as 2.8%. This suggests that other disaster is visually ambiguous, covering a heterogeneous
set of scenarios (accidents, conflict, chemical spills, volcanic eruptions, etc.).

Error Correlations and Multi-Task Interactions. Figure 4.2 shows a class-level error
correlation matrix, where each cell reflects how often errors in one category (rows) overlap
with errors in another (columns). For instance, a red cell at (mild, other disaster) indicates that
whenever the network misclassifies mild damage, it often also misclassifies the corresponding
image’s disaster type as other (or vice versa). Notable patterns include:

• Mild Damage & Hurricane/Landslide: In the damage severity panel, the cells cor-
responding to (mild, hurr.) and (mild, land.) show very high correlation (0.54),
indicating that misclassifying a scene with slight structural damage frequently co-occurs
with misclassifications of hurricane and landslide disaster types.

• Not Informative & Other Disaster: Misclassifications in the informative category
not inf strongly co-occur with errors for other disaster type (0.65), suggesting the CNN
struggles to identify informative content in less common disaster scenarios.
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Task Class Frequency F1 (%) Precision (%) Recall (%)

Damage Severity Little or None 65% 90.7–91.9 88.8–90.2 92.5–94.0
Severe 25% 75.0–76.4 67.9–70.3 83.4–84.3
Mild 10% 9.3–15.4 41.2–42.5 5.2–9.4

Disaster Types Not Disaster 57% 89.3–90.9 85.7–88.4 93.2–94.5
Earthquake 11% 74.1–76.6 68.8–71.9 79.7–81.9
Hurricane 10% 60.7–65.3 62.2–65.3 59.2–65.7
Flood 8% 78.2–81.1 78.1–80.7 78.1–81.5
Other Disaster 7% 5.3–26.2 68.1–79.4 2.8–15.7
Fire 4% 74.8–79.7 71.7–77.3 78.1–83.0
Landslide 2% 66.1–69.0 63.5–67.5 67.7–75.5

Humanitarian Not Humanitarian 58% 89.3–90.4 88.2–90.7 90.1–91.5
Infrastructure Damage 33% 82.4–84.3 78.6–81.7 84.6–87.1
Rescue/ Volunteering 4% 26.3–44.0 50.1–57.7 17.1–39.3
Affected/ Injured People 4% 42.4–47.3 54.8–60.1 32.7–41.6

Informativeness Not Informative 54% 87.8–89.2 89.3–91.4 85.6–88.8
Informative 46% 86.4–87.9 84.0–86.9 87.4–90.4

Table 4.4: Aggregated Class Frequency & Performance Metrics.

Note: The ranges shown for performance scores represent the lowest and highest across our trained
models (Across ResNet50, EfficientNet-b1, and MobileNet-v2)

• Earthquake & Not Informative: There is notable correlation (0.44) between earth-
quake misclassifications and non-informative content errors, indicating the CNN has dif-
ficulty distinguishing between earthquake imagery and non-informative disaster content.

These high-correlation pairs suggest that single-task errors are not independent. In
many cases, confusion in one domain (e.g., damage severity) influences or co-occurs with con-
fusion in another (e.g., disaster type or humanitarian category).

4.2.3 Interim Conclusions
Taken together, our in-depth analyses of the results from our replication of Alam et al. (2023)
point to class imbalance, label ambiguity (mild damage, other disaster, etc.), and visually subtle
features as the main drivers of error.

In subsequent chapters, we address these limitations first by re-labelling problematic
classes (Chapter 5) and then by synthetic data augmentation (Chapter 6), aiming to bol-
ster the training set with more diverse and properly labelled examples. Our study of the error
patterns and their correlations will inform our synthetic image allocation logic.
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Disaster Types Informative Humanitarian

quake fire flood hurr. land. none other not inf inf injured infra not hum rescue

Informative
not inf .44 .08 .20 .54 .54 .19 .65 .11 .09 .15 .12

inf .02 .02 .01 .15 .15 .12 .19 .03 .01 .00 .00

Humanitarian

injured .15 .11 .15 .06 .06 .05 .15 .11 .03

infra .09 .02 .07 .07 .07 .00 .09 .09 .01

not hum .16 .08 .12 .12 .12 .03 .15 .15 .00

rescue .12 .13 .09 .16 .16 .00 .14 .12 .00

Damage

Severity

none .05 .04 .05 .03 .03 .01 .04 .04 .02 .09 .00 .06 .07

mild .34 .10 .12 .54 .54 .08 .36 .43 .04 .17 .14 .21 .29

severe .13 .09 .10 .09 .09 .09 .12 .12 .03 .23 .09 .00 .07

Figure 4.2: Error correlations between task classes. Shown is EfficientNet-b1. Resnet50 and
Mobilenet-v2 produced very similar results.
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Chapter 5

Relabelling the MEDIC Dataset

From the analyses in the previous chapter, after reviewing the similarities between the error ma-
trices and correlations between all three CNN models (ResNet50, EfficientNet-b1, MobileNet-
v2), we drew two conclusions. First, some classes may simply be too heterogeneous to correctly
generalise (e.g., other disaster).

Second, and more concerningly, there may be genuine issues with the human labelling in the
original dataset. Alam et al. (2023) list the agreement scores shown in Table 5.1, which reflect
some legitimate challenges in the annotation process. As the authors noted, certain scenarios
present genuine ambiguity—such as hurricane-induced flooding or images showing both building
damage and rescue efforts—where annotator interpretation naturally varies (Alam et al., 2023).

Tasks Fleiss (κ)1 Krip. (α)2 Avg agg.3
Disaster types 0.46 0.46 0.70
Humanitarian 0.52 0.52 0.73
Informativeness 0.71 0.71 0.91
Damage severity 0.55 0.55 0.79

Table 5.1: Crowdsourced annotation agreement for each task, as presented by Alam et al. (2023).

While our initial plan did not explicitly include a reassessment of the published MEDIC
dataset, our project hinges on having reliable labels for existing images. Class-based synthetic
data augmentation from wrongly labelled images would simply amplify existing errors, under-
mining the validity of our study. Thus, this chapter represents a necessary detour where we
describe our robust relabelling approach.

5.1 Data Relabelling Methodology
We first began by identifying instances of likely misclassifications. Our assumption is that if a
label was evidently misclassified, a first indication would be that different trained CNNs would

1Fleiss’ κ assesses reliability among multiple raters, accounting for agreement occurring by chance, with
values ranging from -1 to 1 (higher indicating stronger agreement).

2Krippendorff’s α is a reliability coefficient suitable for various data types and missing values, also ranging
from -1 to 1.

3‘Avg agg.’ represents the average aggregated score across all annotators.
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agree on the alternative label.
Table 5.2 shows how often only 1, 2, or all 3 CNNs converged on the same “alternative”

label whenever they disagreed with the ground-truth label. Notably, in about 40% of the
misclassified cases, all three networks proposed the same alternative label. Considering that
tasks have from 2 to 7 classes, this level of unanimity in the misclassified responses statistically
significantly deviates from chance and deserves further investigation.

Label 1 2 3 All Relabelled

Little or None 1,421 (43%) 912 (27%) 1,001 (30%) 3,334 1,157 (35%)
Mild 362 (6%) 1,603 (27%) 3,997 ( 67% ) 5,962 2,537 (43%)
Severe 1,713 (47%) 991 (27%) 970 (26%) 3,674 801 (22%)
Damage Severity 3,496 (27%) 3,506 (27%) 5,968 ( 46% ) 12,970 4,495 (35%)
Earthquake 876 (38%) 642 (28%) 790 (34%) 2,308 485 (21%)
Fire 280 (40%) 206 (29%) 221 (31%) 707 133 (19%)
Flood 592 (38%) 459 (29%) 522 (33%) 1,573 308 (20%)
Hurricane 1,022 (27%) 914 (24%) 1,810 ( 48% ) 3,746 1,154 (31%)
Landslide 253 (33%) 218 (29%) 286 (38%) 757 120 (16%)
Not Disaster 1,547 (49%) 755 (24%) 858 (27%) 3,160 1,075 (34%)
Other Disaster 314 (10%) 967 (31%) 1,860 ( 59% ) 3,141 1,321 (42%)
Disaster Types 4,884 (32%) 4,161 (27%) 6,347 ( 41% ) 15,392 4,596 (30%)
Affected Injured or Dead People 580 (27%) 611 (29%) 947 ( 44% ) 2,138 755 (35%)
Infrastructure and Utility Damage 1,965 (45%) 1,203 (28%) 1,200 (27%) 4,368 1,256 (29%)
Not Humanitarian 1,783 (41%) 1,107 (25%) 1,466 (34%) 4,356 1,706 (39%)
Rescue Volunteering or Donation Effort 485 (18%) 752 (28%) 1,450 ( 54% ) 2,687 207 (8%)
Humanitarian 4,813 (36%) 3,673 (27%) 5,063 (37%) 13,549 3,924 (29%)
Informative 2,271 (40%) 1,390 (24%) 2,043 (36%) 5,704 730 (13%)
Not Informative 2,177 (47%) 1,247 (27%) 1,252 (27%) 4,676 1,175 (25%)
Informative (all) 4,448 (43%) 2,637 (25%) 3,295 (32%) 10,380 1,905 (18%)
All Tasks 17,641 (34%) 13,977 (27%) 20,673 ( 40% ) 52,291 14,920 (29%)

Table 5.2: Largest Alternative label agreement among three CNNs in misclassified cases, broken down
by label. Columns 1, 2, 3 indicate the number of CNNs (out of three) that agreed on the single most
frequent alternative label when the original label was misclassified. “All” is the total misclassifications,
and “Relabelled” indicates how many were ultimately corrected via the LLM-as-judge process.

5.1.1 Relabelling Using LLM-as-a-Judge
The “LLM-as-a-judge” is a modern approach that leverages language models to review and po-
tentially correct existing data labels, addressing known issues with human label quality (North-
cutt et al., 2021; Vasudevan et al., 2022). Studies demonstrate LLMs can identify 6-21% of
label errors, with higher-confidence disagreements correlating strongly with true errors (Nahum
et al., 2025). These studies suggest that benchmark evaluations had previously underestimated
model capabilities due to label noise. Furthermore, LLMs such as GPT-3.5/4 can achieve
annotation quality comparable or superior to human crowd workers (Gilardi et al., 2023).

However, deploying LLMs as judges requires mitigating their inherent biases, such as po-
sition and verbosity bias observed when scoring responses, where presentation order or exact
prompt phrasing influences the outcome (Zheng et al., 2023). Another concern is short-cutting,
where LLMs just answers without reasoning. A key mitigation strategy involves structured
prompting: first requiring the LLM to describe the input (e.g., an image) based on a template,
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and then strictly defining the output format and permissible labels. This forces evidence-based
decision-making, reduces deviation, and ensures parseable outputs (Tam et al., 2024).

5.1.2 Relabelling Pipeline
Drawing insight from the literature on LLM-as-judges, we set up a four-step relabelling process
(Figure 5.1).

In brief, each image was labelled independently by three CNNs (ResNet50, MobileNetV2,
and EfficientNet-B1). If at least two models converged on an alternate label, we flagged the
image as potentially requiring relabelling. As expected, these were mainly images from am-
biguous classes such as mild or other disaster. The flagged image was then provided to two
LLMs (GPT-4o and Claude Sonnet-3.5) together with a structured prompt (see Appendix C).
If both LLMs agreed on an alternative label for a task, we updated the annotation accordingly;
otherwise, the original label was retained.

Step 1: Multi-
CNN Inference

Three CNNs (ResNet,
MobileNet, Efficient-
Net) label all images

Step 2: Flag Cases
Flag images where at
least two CNNs differ
from the official label

Step 3: LLM
Judgment

Feed image and
structured prompt
only to both LLMs

Step 4: relabelled
If both LLMs agree
on an alternative

label, update label

Figure 5.1: Relabelling pipeline. Only images with strong CNN-level disagreement are passed to the
LLM. The LLM sees no original labels or CNN outputs, only the image and prompt.

Our approach is conservative, in that first multiple CNNs need to agree on an alternative
label, and then both LLMs-as-judges need to agree on the relabelling. We highlight that to
mitigate potential biases, we did not feed the original label nor the CNN majority vote to the
LLMs. Moreover, our pipeline includes both CNNs and LLMs, thus limiting biases towards one
of the two methods.

As shown in Table 5.2, 29% of labels that were originally misclassified were reclassified (5%
of the total labels).

5.2 Relabelled Dataset CNN Classification Results
We compare model performance on the original (pre-relabelling) dataset versus the relabelled
version. We focus on EfficientNet-B1 as the best-performing architecture in the original exper-
iments (see Chapter 4.2.1). For clarity, we provide two summary tables: one captures overall
task-level metrics, and the other highlights several specific classes where we observed the largest
improvements.

Task-Level Performance. Table 5.3 shows how EfficientNet-B1’s accuracy and macro F1
scores improved after relabelling. We see notable gains in all tasks.

The largest improvement appears in Damage Severity, which rose from 80.6% to 84.3% in
F1, and in Disaster Types, improving from 80.2% to 83.2%. These tasks contained some of the
most problematic classes in the original dataset (e.g. mild for damage severity and hurricane
within Disaster Types), suggesting that relabelling resolved substantial confusion.
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Task Original Relabelled

Accuracy F1 Accuracy F1

Damage Severity 83.1% 80.6% 85.5% 84.3%
Informative 88.6% 88.6% 90.2% 90.2%
Humanitarian 85.0% 84.6% 86.7% 86.3%
Disaster Types 81.9% 80.2% 84.5% 83.2%

Table 5.3: EfficientNet-B1 task-level performance on original vs. relabelled dataset.

Key Improvements. Table 5.4 focuses on four classes (mild, rescue/volunteering effort,
affected/injured people, and hurricane) that saw large benefits from relabelling. Each row
shows the original vs. relabelled F1 score for EfficientNet-B1.

Class F1 (Original) F1 (Relabelled)

Mild (Damage Severity) 15.4% 35.8%
Rescue/volunteering effort (Humanitarian) 44.0% 57.5%
Affected/injured people (Humanitarian) 47.3% 53.6%
Hurricane (Disaster Types) 65.3% 72.5%

Table 5.4: Selected class-level improvements for EfficientNet-B1 (original vs. relabelled).

Notably, mild more than doubled its F1 from 15.4% to 35.8%. This class is one of the most
error-prone, likely due to the ambiguity of the term “mild” (partially damaged but still usable),
as well as the fact that it is severely underrepresented.

Rescue/volunteering effort also receives a substantial boost, from 44.0% to 57.5% F1. Qual-
itative analysis showed that many of the mislabelled images were actually not humanitarian,
but might simply depict people in them.

One notable exception to this gain in performance is other disaster, our enfant terrible,
whose F1 declined by 1 point after relabelling.

Full results per class and model are provided in Appendix C.2

Confusion Matrices. After applying our LLM-based relabelling (Figure 5.2), we see fewer
mild vs. none confusions, suggesting the partial-damage scenarios are now more clearly delin-
eated. Similarly, rescue exhibits fewer misclassifications, reflecting better discrimination from
the injured and not humanitarian classes. However, other disaster remains strongly conflated
with quake or none, although it is unclear whether this remains a labelling issue or a limitation
of CNN models.

5.3 Relabelling Remarks
Overall, we found that the revised labels seem to help clarify ambiguous samples, leading to
higher accuracy and more coherent decision boundaries for key tasks. This pattern aligns with
literature suggesting that correcting a relatively small fraction of systematically incorrect labels
can yield disproportionate benefits in a model’s downstream performance (Nahum et al., 2025).
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While significant gains were observed, certain inherently heterogeneous classes like other
disaster remained challenging, suggesting limitations of our relabelling approach or that label
noise was only one factor limiting performance for such categories.

Finally, we note that our intervention is far from exhaustive and there are many areas for
improvement. However, a thorough reassessment of the MEDIC dataset would constitute a
project in itself, beyond the scope of the current work. Our goal here was to address ma-
jor labelling issue with a minimal, conservative intervention so as to proceed with our main
experiments involving synthetic data augmentation, described in the next chapter.
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Figure 5.2: Confusion matrices comparing EfficientNet-b1 trained on original (left) and relabelled
(right) datasets.

Disaster Types (Original)

Predicted
True quake fire flood hurr. land. none other

quake .81 .01 .00 .04 .01 .09 .00
fire .03 .83 .00 .01 .00 .10 .00

flood .01 .00 .81 .05 .01 .10 .00
hurr. .08 .01 .06 .65 .02 .15 .00
land. .07 .00 .02 .06 .75 .07 0
none .01 .00 .01 .02 .00 .93 .00
other .22 .05 .02 .11 .02 .38 .15

Disaster Types (Relabelled)

Predicted
True quake fire flood hurr. land. none other

quake .86 .01 .00 .03 .00 .07 .00
fire .03 .85 .00 .01 .00 .06 .01

flood .02 .00 .80 .04 .01 .11 0
hurr. .04 .02 .03 .73 .01 .13 .00
land. .06 .01 .03 .06 .74 .07 0
none .01 .00 .01 .02 .00 .93 .00
other .24 .09 .02 .08 .01 .37 .14

Informativeness (Original)

Predicted
True not inf inf

not inf .87 .12
inf .09 .90

Informativeness (Relabelled)

Predicted
True not inf inf

not inf .89 .10
inf .08 .91

Humanitarian (Original)

Predicted
True injured infra not hum rescue

injured .41 .30 .21 .05
infra .00 .87 .10 .01

not hum .01 .06 .90 .01
rescue .08 .30 .21 .39

Humanitarian (Relabelled)

Predicted
True injured infra not hum rescue

injured .50 .25 .16 .07
infra .00 .89 .08 .01

not hum .00 .05 .91 .01
rescue .06 .24 .20 .49

Damage Severity (Original)

Predicted
True none mild severe

none .93 .00 .05
mild .34 .09 .56

severe .13 .02 .84

Damage Severity (Relabelled)

Predicted
True none mild severe

none .93 .01 .04
mild .27 .26 .45

severe .08 .03 .87

Confusion matrices comparing EfficientNet-b1 trained on original (left) and relabelled (right) datasets. The
matrices show notable improvements in classification performance, particularly for the “mild” damage class
(from 9% to 26%), “injured” class (from 41% to 50%), and “rescue” class (from 39% to 49%). Dark blue cells
indicate correct classifications, light blue cells show mediocre performance, and red cells highlight problematic
misclassifications.
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Chapter 6

Synthetic Data Augmentation

Disaster response systems need to be prepared before emergencies occur. While our previous
work established CNN baselines (Chapter 4) and improved performance and dataset reliability
through relabelling (Chapter 5), we remain constrained by what existing data represents: a
narrow spectrum of well-documented natural disasters.

This chapter examines whether synthetic imagery can address these gaps. In the following,
we describe our pipeline that combines large language models and modern image generation
models to create artificial disaster images that maintain semantic accuracy to their real-world
counterparts. We then discuss our findings from fine-tuning CNNs for disaster image classifi-
cation using our synthetic data augmentation pipeline.

6.1 Preliminary Experiments for Image Generation
While recent research demonstrates that synthetic data from text-to-image generative models
can significantly reduce class imbalance and improve downstream classification performance
(He et al., 2023), the effectiveness of such augmentation depends heavily on prompt alignment
with intended labels. Multi-stage or structured prompting strategies typically achieve higher
fidelity compared to single-pass approaches (Wei et al., 2022; Kojima et al., 2022; Chen et al.,
2023; Yang et al., 2024).

Thus, we performed a set of preliminary experiments to find the best-performing setup
for generating synthetic disaster images belonging to desired class labels. In particular, we
evaluated three prompt designs (Näıve, Structured, and Multistage), three LLM captioners
(Claude-3.7-sonnet, GPT-4o, Claude-3.5-haiku), and three diffusion models (Stable Diffusion-
1.6, Stable Diffusion-3.5, Flux 1-dev), with three real images and one hypothetical scenario per
class combination (360 examples). Full details are reported in Appendix D.1.

These tests identified Flux 1-dev with a multistage prompting approach using Claude 3.7
Sonnet or GPT-4o for captioning as the most effective combination. Still, even the best-
performing combinations achieved ∼ 50 − 60% alignment between the desired image label and
the generated one, as judged by other LLMs.

Discussion. Although these small-scale tests provided useful insights, the overall align-
ment remained disappointing (50–60%). We identified three key issues:
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1. Prompt Length and Truncation. Excessively detailed instructions often confused
the diffusion models or were internally truncated, yielding incomplete or noisy outputs.
This aligns with the broader literature cautioning against overly verbose prompts when
chain-of-thought or multi-stage strategies are employed (Renze and Guven, 2024).

2. Content Refusals. Scenes depicting human suffering frequently triggered rejections
from both the LLMs (during caption generation) and the diffusion model (during final
synthesis).

3. Lack of diversity in captions from labels. When generating entirely hypothet-
ical scenarios from label combinations (e.g. damage=severe, disaster=earthquake,
informative=informative, humanitarian=not humanitarian), we found that the LLMs
would produce near-identical descriptions across multiple requests, even with a relatively
high sampling temperature (0.9). For example, every hypothetical earthquake scene re-
sembled the same urban street in Turkey, viewed from a similar vantage point.
This homogeneity is not uncommon in text-to-image systems, as generative models often
default to their most probable, “familiar” instantiations of a given concept (He et al.,
2023). Figure 6.1 shows two outputs generated with the same label combination, with
similarities across the two highlighted. The third example uses our proposed solution,
which we term ‘diversity keywords’ (see below).

6.2 Prompt Refinement
We refined our prompting strategy with the insights gained from our preliminary experiments.

Fallback Prompts. To manage content rejections from LLMs or diffusion models, we imple-
mented two fallback prompts. The first clarifies the academic and ethical context of our work,
while the second requests a moderated description (e.g., referring generally to injured individ-
uals needing medical aid rather than graphic injuries). If both fallbacks fail, we exclude that
particular synthetic image. The exact fallback prompts appear in Appendices D.7 and D.8.

Diversity Keywords. We adopted a controlled keyword strategy to enhance diversity with-
out deviating from core label requirements (e.g., avoiding improbable scenarios like hurricanes
in polar climates). By selecting neutral dimensions—such as time of day, camera angles, broad
geographic locations, and lexically constrained prompts—we introduced beneficial variability
while maintaining scenario integrity (Yang et al., 2024). Letter-based prompts additionally
mitigated repetitive token generation (Wei et al., 2022). Specifically, we injected variation in:

• Time of Day: dawn, midday, dusk, evening, . . .
• Camera Angle: aerial view, low angle, ground level, close-up, . . .
• Letter-based Word Prompts: e.g., “include two distinct words starting with letter B”
• Broad Geography: Northern hemisphere, Southern hemisphere, West, East (excluding

specific countries)
These variations aimed primarily to disrupt default prompt outputs rather than introduce

complexity for its own sake. Figure 6.1C demonstrates how diversity keywords significantly
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(A) Example 1:

<caption> An aerial view of a 500m x 300m urban area in Turkey, following an earthquake. The
image shows 7 completely collapsed multi-story residential buildings with pancaked concrete
floors and 3 partially collapsed commercial structures with exposed internal floors. Roads
have 0.5-1m wide cracks making them unusable, with exposed and leaking water pipes and
downed power lines. 22 emergency responders in uniform operate 4 excavators and 2 cranes
amid concrete rubble piles 3-6m high. 8 emergency vehicles (3 fire trucks, 5 ambulances)
are parked nearby. Approximately 50 civilians stand in groups of 5-10 people, observing
from a safe distance. Search and rescue operations are actively underway with responders
using listening devices on the rubble and 4 search dogs with handlers searching through
debris. 12 tents have been set up 50m from the collapsed buildings. The scene features a
clear daytime sky with mountainous backdrop visible 5km in the distance and a mosque with a
damaged minaret (top 3m broken off). Turkish language road signs are visible throughout the
affected area. </caption>

(B) Example 2:

<caption> Aerial view of a 500m x 350m urban residential area in _Izmir, Turkey following
an earthquake. Four 5-7 story apartment buildings have completely collapsed with pancaked
floors, while two others show partial structural failure. Concrete debris fields extend
20-30m from building foundations, with the largest measuring 28m x 35m. Ground fissures
0.5-1m wide cut across streets, and dust clouds hover 15-20m above collapse sites. Eight
emergency vehicles (4 fire trucks, 3 ambulances, 1 police car) are positioned strategically
around the site. Thirty-seven people are visible: 22 emergency responders in high-visibility
gear operating with technical equipment including listening devices and search cameras,
and 15 civilians gathered in a designated safe zone 50m from the collapsed structures. Two
excavators are actively removing debris while four search and rescue teams work at different
collapsed buildings. A ruptured water main has created an 8m diameter flooding area. Twelve
downed power lines indicate electrical grid failure, and three roads are impassable due to
debris. A makeshift medical triage area with 5 medical personnel has been established. The
scene is set during clear daytime conditions with mountains visible 5km in the background
and street signs in Turkish visible. </caption>

(C) Example 3: With use of diversity keywords: ’ground level’, ’Southern hemisphere’

<caption> Ground-level view of a severely damaged urban residential area at dawn in the
southern hemisphere, spanning approximately 120m x 80m. Three 4-story residential buildings
have completely collapsed with visible pancaked floors and exposed rebar protruding 1-3m
from concrete fragments. A water tower shows 70% structural failure, and two utility poles
have severed with downed lines. The main road has a 50cm vertical displacement making it
impassable, with 8 crushed vehicles visible. Ground fissures 30-40cm wide run through the
pavement, and a perimeter wall has collapsed along a 35m stretch. A communication antenna
is tilted at a 35-degree angle. Fourteen people are present: 6 in civilian clothing and
8 in uniform. Four emergency vehicles (2 fire trucks, 1 ambulance, 1 police vehicle) are
positioned near a temporary 4m x 6m shelter structure. Emergency responders are conducting
initial site assessment with 2 individuals using specialised listening equipment and another
group establishing a communication system. Two dogs with handlers are navigating the debris
following a systematic grid search pattern while local residents gather in a designated
safe area. Dawn’s pink-orange light illuminates the scene at approximately 15% ambient
illumination, with southern hemisphere constellations still visible in the dark portions
of the sky. Light fog at ground level limits visibility to about 80m, and dust particles
reflect the early morning light. The temperature of approximately 12°C is evident from
visible breath condensation as people examine building remnants with flashlights. </caption>

Figure 6.1: Three captions generated by Claude Sonnet-3.7 from similar task label combinations.
Blue text indicates similar content between captions. Example 3, where the use of generic keywords
has been implemented, shows significantly less overlap with Examples 1 and 2. 27



reduced redundancy between generated prompts. The third caption example, generated using
diversity keywords, shows a marked reduction in similarity to the two prompts that do not.

Final Prompt Structure. By isolating the LLM’s full internal reasoning in <analysis>
while only exposing the diffusion model to a briefer <caption>, we mitigated many of the earlier
pitfalls (see Figure 6.2). Although some rejections persisted, this final approach consistently
produced more label-aligned images without excessive or dramatic text. The fallback prompts
prevented outright failure in sensitive cases, thereby maximising the overall yield of synthetic
data. See Appendix D.2.1 for the full prompts tested.

Captioning from images
<prompt>
Return:
</analysis>
... [Analysis section with minimal speculation + structured tags]
</analysis>
</caption>
... [Self-contained summary that we actually send to diffusion model]
</caption>

Captioning from labels
<prompt>
Return:
</analysis>
... [Analysis tags describing an imagined scene with given labels]
</analysis>
</caption>
... [Self-contained description for image generation]
</caption>

First fallback prompt
[Explains academic purpose, anonymity of people depicted, ethical standards]
Second fallback prompt
[Requests a toned-down version of the same scenario that aligns with content

guidenlines]

Figure 6.2: Prompt template structure with various response types

Figures 6.3 to 6.5 show some examples of the images generated with this prompt. For
‘From Image’ scenarios, the image on the left is the original image from the training set. The
caption generated in the <caption> output from the LLM is used to generate the image on the
right with Flux 1-dev. For ‘From Label’ scenarios, the caption describes a purely hypothetical
scenario generated by Claude Sonnet 3.7, which is used to generate the image on the right with
Flux 1-dev. These have been selected using our random seed, and do not represent the ‘best’
or ‘worst’ of the images generated.
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From image

Original image

Synthetic image

Ground-level view of a narrow urban alleyway covered in brick debris and rubble
following an earthquake. Chinese rescue workers in bright red uniforms huddle
in the foreground left, while damaged but standing buildings line both sides.
Local businesses with visible signage remain partially intact as additional rescue
personnel work in the background.

LLM caption
From labels

Ground level view of urban residential area at
sunrise showing mild earthquake damage: zigzag
cracks along building facades, tilted streetlights,
and scattered debris. Volunteers in yellow vests
clear rubble while others distribute supplies from
tables. A silver ladder leans against a damaged
wall as workers with battery-powered lanterns in-
spect eastern-facing structures.

LLM caption

Synthetic image

Figure 6.3: Comparison of image synthesis approaches for disaster imagery: generation from source
images (top) versus generation from text labels (bottom). Original labels were Damage Severity: mild;
Informative: informative; Humanitarian: rescue or volunteering effort; Disaster Type: earthquake
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From image

Original image

Synthetic image

Ground-level photograph of an outdoor community gathering with people seated
on wooden benches. A handwritten red sign reading ”WORSHIP SERVICE
HERE 10:00 SUNDAY”; leans against green shrubs. A temporary setup with
canopies visible in background. Parked vehicles visible in distance. A dog rests
near seated individuals on grassy ground.

LLM caption
From labels

Shot at eye-level of a person with a minor leg in-
jury receiving first-aid in a western park at sun-
rise. Family members apply bandages from an
open red medical kit on a wooden bench. Intact
playground equipment and walking paths visi-
ble in background. Frost covers the grass in the
morning light.

LLM caption

Synthetic image

Figure 6.4: Comparison of image synthesis approaches for disaster imagery: generation from source
images (top) versus generation from text labels (bottom). Original labels were Damage Severity: little
or none; Informative: informative; Humanitarian: affected, injured or dead people; Disaster Type:
not disaster
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From image

Original image

Synthetic image

Medium shot of a soldier in WWII combat uniform and helmet standing amid a
burning environment. Orange-yellow flames engulf structures in the background,
creating dramatic lighting. Dark silhouettes visible through smoke. This is a
screenshot from the video game ”Call of Duty: WWII” depicting a fictional war
scene, not an actual disaster.

LLM caption
From labels

Panoramic view of an industrial complex ablaze
in the early hours, Northern hemisphere. Intense
inferno with 40-foot orange-red flames consuming
warehouses. Severely damaged steel structures
with collapsed roofs, melted support beams, and
charred equipment. No people or emergency re-
sponders visible, just the isolated destruction.

LLM caption

Synthetic image

Figure 6.5: Comparison of image synthesis approaches for disaster imagery: generation from source
images (top) versus generation from text labels (bottom). Original labels were Damage Severity:
severe; Informative: informative; Humanitarian: not humanitarian; Disaster Type: fire. This is a
particularly interesting case where the captioning LLM detects that the original image
is not, in fact real, but from a video game.
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6.3 Data Allocation Strategy
Considering budget constraints, for our final data augmentation step we can generate up to
10,000 synthetic images, a considerable addition to the MEDIC training set (∼50,000 images).
Before we proceed, we have to decide how to assign our synthetic data to classes.

We have three goals in our allocation strategy:
1. Future-proof our model to generalise to novel, unseen situations.
2. Reduce confusion in worst-performing and underrepresented classes.
3. Improve classes that are critical to humanitarian rescue efforts, even if they already

perform well.
Hence, improving our model’s results is only one of our goals – the main ambition is to

allow our models to better generalise to new, unseen scenarios, and especially in those that are
critical to rescue.

We allocate images according to a heuristic formula designed according to the three goals
above. In principle, our approach could be formalised following a decision-theoretical framework
that models the influence of increasing dataset size on performance and assigns a different
cost for each missclassification. However, assigning such costs and modelling the downstream
performance effect is highly nontrivial. Thus, we leave devising a more sophisticated allocation
strategy for future work.

We first allocate a “floor” of synthetic images proportionally to all classes, then distribute
the remainder according to F1 performance and correlated error rates. We pay special attention
to error correlations, knowing that misclassifications in one class lead to errors in others.

The allocation formula is:

Images = Base + Weakness Bonus + Correlation Bonus + Impact Bonus (6.1)

where:

Base = 10

Weakness Bonus =


80, per Critical task label
40, per Moderate task label
20, per Below Average task label
0, otherwise

Weakness Thresholds =


Critical: F1 < 40.0%
Moderate: F1 < 60.0%
Below Average: F1 < 75.0%
Normal: F1 ≥ 75.0%

Error Correlation Bonus =


32, if Mild damage + specific Disaster Types
32, if Other Disaster + Informative
20, if Humanitarian label + damage (Mild or Severe)
0, otherwise
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Impact Bonus =


28, if Affected People present
24, if Severe damage + major disasters
20, if Rescue Volunteering Or Donation Effort present
0, otherwise

Note: Bonuses are cumulative across categories. For example, a combination showing severe
damage from an earthquake with affected people people would receive multiple relevant bonuses.

Class F1 Score (%) Train Count Synthetic Synthetic (%) Share (%)

Damage Severity
Little or None 92.0% 28,227 2,541 9.0% 25.4%
Mild 28.4% 3,008 5,058 168.2% 50.6%
Severe 79.9% 18,118 2,389 13.2% 23.9%
Total 49,353 9,988 20.2% 100.0%

Disaster Types
Earthquake 80.1% 13,176 1,122 8.5% 11.2%
Fire 78.5% 1,820 1,022 56.2% 10.2%
Flood 81.0% 3,547 1,172 33.0% 11.7%
Hurricane 68.2% 4,109 1,580 38.5% 15.8%
Landslide 69.1% 1,155 1,343 116.3% 13.4%
Not Disaster 90.7% 24,038 1,205 5.0% 12.1%
Other Disaster 16.2% 1,508 2,544 168.7% 25.5%
Total 49,353 9,988 20.2% 100.0%

Humanitarian
Affected Injured or Dead People 48.0% 3,268 3,123 95.6% 31.3%
Infrastructure and Utility Damage 85.1% 18,438 1,777 9.6% 17.8%
Not Humanitarian 90.6% 23,605 1,721 7.3% 17.2%
Rescue Volunteering or Donation Effort 52.9% 4,042 3,367 83.3% 33.7%
Total 49,353 9,988 20.2% 100.0%

Informative
Not Informative 89.2% 21,141 818 3.9% 8.2%
Informative 88.1% 28,212 9,170 32.5% 91.8%
Total 49,353 9,988 20.2% 100.0%

Table 6.1: Synthetic image allocation by class, shown against F1 results and class frequency.

6.4 Augmented Dataset Fine-Tuning Results
Having established in the previous sections the best-performing synthetic data generation
pipeline, prompt designs, and class allocations, we then generated the synthetic dataset and
fine-tuned the CNN using the augmented dataset, consisting of the (relabelled) MEDIC dataset
plus our synthetic images. We analyse our results in the rest of this section.

6.4.1 Class-level Results
The task-level performance comparison in Table 6.2 presents a sobering assessment of our syn-
thetic data augmentation strategy. Despite targeted allocation of resources to underperforming
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classes, quantitative improvements remain modest at best, with some metrics actually showing
slight regression.

Damage Severity shows a marginal F1 improvement (84.6% vs 84.3%), with the mild damage
class improving from 35.8% to 40.0% despite receiving over half our synthetic data budget
(Table 6.1). While this 12% relative gain represents some progress, it falls considerably short
of expectations given our substantial investment in this category.

For Disaster Types, the overall F1 score showed only marginal improvement (83.6% vs
83.2%), with other disaster increasing from 24.2% to 34.4%—our most substantial gain. This
heterogeneous category, allocated 25.5% of our synthetic disaster images, at least demonstrates
that synthetic data can help with poorly represented classes, even if the absolute performance
remains disappointing.

The Humanitarian task reveals the limitations of our approach most clearly. Despite di-
recting 31.3% of synthetic images toward ‘Affected/Injured People’, we observed no significant
difference (53.4% vs 53.6%). This suggests fundamental constraints in using synthetic imagery
for ethically sensitive content, where image generation systems’ content filters actively resist
creating the very scenarios we sought to augment.

These underwhelming results likely stem from the inherent heterogeneity of the MEDIC
dataset itself—with its imprecise class boundaries and subjective annotation criteria—combined
with the limitations of current text-to-image systems. Nevertheless, the synthetic images in-
troduced valuable visual diversity to humanitarian-significant classes, potentially preparing the
model for disaster presentations beyond the training distribution, even if immediate metrics
show limited gains.

Task Original Relabelled Augmented

Accuracy F1 Accuracy F1 Accuracy F1

Damage Severity 83.1% 80.6% 85.5% 84.3% 85.3% 84.6%
Informative 88.6% 88.6% 90.2% 90.2% 89.8% 89.8%
Humanitarian 85.0% 84.6% 86.7% 86.3% 86.1% 85.9%
Disaster Types 81.9% 80.2% 84.5% 83.2% 84.4% 83.6%

Table 6.2: EfficientNet-B1 task-level performance comparison across original, relabelled, and synthet-
ically augmented datasets.

6.4.2 Confusion Matrices
The confusion matrices in Figure 6.6 help understand why our synthetic augmentation strategy
may have struggled to deliver substantial improvements.

For Disaster Types, while other disaster correct classifications increased from 14% to 24%,
this remains low for a critical category. The persistent confusion with ’Not Disaster’ (36%)
points to a fundamental issue: the boundaries between different disaster types in real-world
imagery are often ill-defined, and our synthetic images couldn’t overcome this inherent ambi-
guity.

The Humanitarian matrices show only minor shifts in classification patterns. The ‘Affect-
ed/Injured People’ category improved marginally (50% to 53%), but confusion with ‘Infrastruc-
ture Damage’ (22-25%) remained consistent. This highlights a central challenge: disaster scenes
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Table 6.3: Performance comparison between EfficientNet-B1 trained on the augmented dataset versus
the relabelled dataset.

EfficientNet-B1 (Augmented) EfficientNet-B1 (Relabelled)

Task/Class Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

Damage Severity 85.3% 84.6% 85.5% 84.3%
Little Or None 90.8% 92.8% 91.0% 93.0%
Mild 90.3% 40.0% 90.8% 35.8%
Severe 89.6% 81.2% 89.4% 81.4%

Informative 89.8% 89.8% 90.2% 90.2%
Not Informative 89.8% 90.2% 90.2% 90.6%
Informative 89.8% 89.4% 90.2% 89.8%

Humanitarian 86.1% 85.9% 86.7% 86.3%
Affected/Injured People 96.9% 53.4% 97.0% 53.6%
Infrastructure Damage 90.6% 86.2% 90.8% 86.7%
Not Humanitarian 90.1% 91.2% 90.6% 91.6%
Rescue/Volunteering 94.7% 57.3% 95.0% 57.5%

Disaster Types 84.4% 83.6% 84.5% 83.2%
Earthquake 95.6% 82.2% 95.3% 81.3%
Fire 98.2% 82.5% 97.9% 79.4%
Flood 96.9% 82.2% 97.0% 82.8%
Hurricane 94.2% 71.5% 94.4% 72.5%
Landslide 98.4% 70.4% 98.6% 72.5%
Not Disaster 90.2% 91.5% 90.5% 91.8%
Other Disaster 95.2% 34.4% 95.2% 24.2%

Performance comparison between EfficientNet-B1 trained on the augmented dataset versus the relabelled
dataset. The table shows metrics for each classification task and class. For tasks (in bold), accuracy rep-
resents multi-class classification performance across all classes, while F1 score is the weighted average across
classes. For individual classes, accuracy shows binary classification performance (how well the model distin-
guishes that class from all others), and F1 score measures the harmonic mean of precision and recall for that
specific class. The best performing score in each row is highlighted in green.

typically contain multiple elements simultaneously, and synthetic data alone cannot resolve the
annotation inconsistencies in the original dataset.

The Damage Severity matrices reveal our most notable improvement in the problematic
mild damage category (26% to 32% correct classifications). However, this still means two-
thirds of mild damage cases are incorrectly classified, suggesting we may have overestimated
what synthetic data could contribute to inherently subjective category boundaries.

6.4.3 Feature Space Distribution of Synthetic Data
As an additional attempt to understand what is effectively a null result, we tried to visualise
the learned category boundaries using dimensionality reduction techniques on the activations of
the CNN layers. Figure 6.7 displays t-SNE visualisations (Van der Maaten and Hinton, 2008)
of penultimate layer embeddings across our classification tasks, with filled contours showing
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original data distributions and dashed lines representing synthetic image clusters.
The plots reveal a consistent pattern: synthetic data occupies peripheral regions rather than

targeting overlap areas where classification errors typically occur. In Damage Severity, origi-
nal mild damage samples overlap substantially with both severe and little or none—matching
the confusion patterns in our matrices— yet our synthetic examples form clusters extending
outward with limited presence in these ambiguity regions.

For Disaster Types, synthetic other disaster examples create disconnected clusters separate
from the original distribution. This positioning may explain why we achieved our largest yet
still modest improvement (24.2% to 34.4% F1). The original data shows considerable natural
overlap between earthquake, hurricane and other disaster, but our synthetic examples rarely
populate these fuzzy boundary regions.

The Humanitarian task demonstrates similar limitations, with synthetic affected, injured
or dead people forming isolated clusters away from category overlap zones. This separation
reflects a fundamental challenge: the task contains an implicit classification hierarchy where
images often display multiple humanitarian elements simultaneously. Meanwhile, Informative
shows the greatest distribution similarity between original and synthetic data, consistent with
its minimal performance change.

In an ideal implementation, synthetic data would directly target confusion boundaries by
populating feature spaces where the model struggles to differentiate between classes. Our ap-
proach successfully expanded coverage to novel disaster presentations—potentially enhancing
robustness against future distribution shifts—but the embeddings clarify why immediate clas-
sification gains remained limited.

This finding points to a key direction for future work. While synthetic data effectively
extends conceptual coverage, resolving the fundamental ambiguities in disaster imagery—with
its co-existing elements and subjective boundaries—requires more precise control over feature
representations than we were able to provide.
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Figure 6.6: Confusion matrices comparing EfficientNet-B1 trained on augmented dataset (left) and
relabelled dataset (right).

Disaster Types (Augmented)

Predicted
True quake fire flood hurr. land. none other

quake .85 .01 .00 .02 .01 .07 .01
fire .01 .87 .00 .00 .00 .06 .03

flood .01 .00 .78 .04 .01 .12 .00
hurr. .05 .01 .03 .72 .02 .14 .01
land. .07 .01 .01 .06 .76 .06 .01
none .01 .00 .00 .02 .00 .92 .00
other .18 .08 .02 .07 .01 .36 .24

Disaster Types (Relabelled)

Predicted
True quake fire flood hurr. land. none other

quake .86 .01 .00 .03 .00 .07 .00
fire .03 .85 .00 .01 .00 .06 .01

flood .02 .00 .80 .04 .01 .11 .00
hurr. .04 .02 .03 .73 .01 .13 .00
land. .06 .01 .03 .06 .74 .07 .00
none .01 .00 .01 .02 .00 .93 .00
other .24 .09 .02 .08 .01 .37 .14

Informativeness (Augmented)

Predicted
True not inf inf

not inf .88 .11
inf .08 .91

Informativeness (Relabelled)

Predicted
True not inf inf

not inf .89 .10
inf .08 .91

Humanitarian (Augmented)

Predicted
True injured infra not hum rescue

injured .53 .22 .18 .06
infra .01 .87 .09 .01

not hum .01 .05 .91 .01
rescue .07 .21 .19 .51

Humanitarian (Relabelled)

Predicted
True injured infra not hum rescue

injured .50 .25 .16 .07
infra .00 .89 .08 .01

not hum .00 .05 .91 .01
rescue .06 .24 .20 .49

Damage Severity (Augmented)

Predicted
True none mild severe

none .93 .02 .03
mild .26 .32 .41

severe .09 .05 .84

Damage Severity (Relabelled)

Predicted
True none mild severe

none .93 .01 .04
mild .27 .26 .45

severe .08 .03 .87

Confusion matrices comparing EfficientNet-B1 trained on augmented dataset (left) and relabelled dataset
(right). The augmented model shows modest improvements in several areas, particularly in “other disaster”
classification (24% vs 14%) and “mild” damage identification (32% vs 26%). Both models continue to struggle
with similar misclassification patterns, notably the tendency to classify “mild” damage as either “none” or
“severe”. The synthetic data appears to provide incremental benefits for difficult edge cases while maintaining
performance on well-represented classes. Dark blue cells indicate correct classifications, light blue cells show
mediocre performance, and red cells highlight problematic misclassifications.
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Figure 6.7: t-SNE Visualisation of Penultimate Layer Embeddings.

Each plot shows the distribution of features in the penultimate layer of our EfficientNet-B1 model projected
into two dimensions via t-SNE. Filled contours represent original data distributions while dashed lines show
synthetic image clusters. The plots demonstrate how synthetic examples (dashed) often occupy peripheral
regions rather than the ambiguous boundary areas between classes where most classification errors occur. This
helps explain why performance improvements were modest despite the substantial allocation of synthetic data
to challenging categories like mild damage and other disaster.
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Chapter 7

Zero-Shot Classification with Large
Multimodal Models

Our synthetic data generation system, whilst considerably more sophisticated than earlier ef-
forts, did not significantly improve our F1 results when used to augment our training dataset.
What if, instead, we bypassed the traditional pipeline entirely?

The emergence of large multimodal models offers an attractive alternative. These systems—
trained on vast corpora of image-text pairs—offer nuanced visual understanding capabilities
without task-specific fine-tuning. Their underlying architecture enables interpretation of dis-
aster imagery through conceptual understanding rather than low-level pattern matching.

This chapter examines whether such models can perform disaster image classification as
zero-shot tasks, by asking an off-the-shelf model, via application programming interfaces (APIs),
to classify a given image with a crafted prompt. We devise our analysis in two phases. First,
we examine several prompt designs, analysing how different reasoning frameworks affect classi-
fication accuracy. For this exploratory prompt design phase, we test a large number of models
and prompt combinations on a smaller validation set. Then, we distil the insights and results
from our preliminary exploration into a single prompt for the final zero-shot experiment on
the full test set. In the following, we detail our experimental setup, the models and prompts
evaluated for both phases, and the results achieved across multiple classification tasks.

7.1 Exploratory Prompt Design Phase
In this section, we cover the experimental details of the exploratory prompt design phase,
including the models, prompt types, and dataset used for the analysis.

Models. For this exploratory phase, we selected five leading vision-language models covering
a spectrum of capabilities, sizes, costs, and possibility of local deployment, from state-of-the-art
closed-source models to smaller but open-weights models; see Table 7.1. For our experiments,
we use a common pipeline, accessing all models via APIs through their model providers.

Prompts. To assess how different prompting methodologies affect classification performance,
we designed five distinct prompting strategies:
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Table 7.1: Vision-Language Models tested in the Exploratory Prompt Design Phase.

Model Name Provider Description

Claude 3.5 Sonnet Anthropic Flagship model with frontier performance.
Claude 3.5 Haiku Anthropic Faster, cheaper vision-capable model.
GPT-4o OpenAI Widely regarded as state-of-the-art in multimodal

capabilities, as of early 2025.
Pixtral Large Mistral AI Large vision-language model optimised for detailed

visual understanding.
Pixtral Small Mistral AI Smaller open-weights model deployable locally.

• Direct Classification: A straightforward approach that instructs the model to directly
categorise what it sees into predefined classes after a brief analysis phase.

• Two-Phase Analysis: A structured approach that separates observation from assess-
ment, requiring the model to first describe what it sees, then evaluate possible classifica-
tions with confidence levels before making final decisions.

• Elimination Reasoning: A systematic method that requires the model to explicitly
consider evidence for each possible classification option and document its reasoning pro-
cess for eliminating alternatives.

• Uncertainty Aware: A confidence-based approach that instructs the model to assign
confidence levels (0-100%) to its classifications and explicitly identify uncertainty factors
for low-confidence predictions.

• Weighted Option Analysis: A probabilistic approach requiring the model to assign
percentage probabilities to all possible classifications within each category, ensuring they
sum to 100%, before selecting the highest-probability option.

These prompting strategies represent a progression from direct instruction to increasingly
elaborate reasoning frameworks, allowing us to test whether more structured prompting leads
to improved classification accuracy. The full prompts are available in Appendix E.

Prompt Validation Set Design. For this exploratory phase, due to the number of experi-
mental conditions to test and limited resources (API costs), we are unable to run our analysis
on the full MEDIC validation dataset. Instead, we created a balanced representative subset
of the MEDIC validation dataset while ensuring inclusion of rare label combinations, to test
model robustness on edge cases. The resulting validation subset contains 500 images with a
class distribution mirroring the full validation set (see Appendix E.1.1).

7.2 Exploratory Prompt Design Phase Results
Classification results for all prompts and models considered in this exploratory phase are pre-
sented in Table 7.2, presenting both overall accuracy and accuracy per task (Damage Severity,
Informative, Humanitarian, Disaster Type). Our findings show a clear stratification of model
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capabilities, with larger models outperforming their smaller counterparts, though with signifi-
cant variations in how different prompting strategies affect performance.

We report in the Appendix a detailed analysis of these results by model type (Appendix E.1.2)
and prompt (Appendix E.1.3), including a study the inter-class confusion patterns (Appendix E.1.4).
Our preliminary results on this smaller set (500 images) were validated by additional statistical
analyses (Appendix E.1.5). Additional results, such as prompt processing times, are reported
in Appendix E.1.6 and following sections.

We summarise here the key findings:

• Model Superiority: GPT-4o consistently demonstrated the highest overall accuracy,
significantly outperforming the other tested models (Claude Sonnet, Claude Haiku, Pix-
tral Large, Pixtral Small) across most tasks on the validation subset (p < 0.05). Claude
Sonnet ranked as the second most capable model.

• Prompt Effectiveness: Counter to the initial hypothesis that complex reasoning would
improve results, the straightforward Direct Classification prompt yielded the best or near-
best performance for the top models (GPT-4o and Claude Sonnet) in most tasks. How-
ever, specific prompts showed strengths in certain areas, such as the Uncertainty Aware
prompt improving GPT-4o’s performance on the challenging Damage Severity task.

• Confusion Patterns: The analysis highlighted specific, recurring confusion points be-
tween classes (e.g., mild vs. severe damage, other disaster vs. not disaster, overlapping
humanitarian categories), indicating areas needing explicit clarification in the prompt
design.

Based on these findings, GPT-4o was selected as the model for the final zero-shot evaluation
on the full test set. Furthermore, the insights into prompt effectiveness and confusion patterns
directly informed the design of the final classification prompt described in the next section,
aiming to combine the clarity of direct classification with targeted instructions to mitigate
common errors.

7.3 Final Classification Prompt

Based on the findings discussed in Section 7.2, we develop a prompt that aims to bridge:

1. Direct Classification Structure: Maintaining the straightforward, task-focused format
that yielded the best overall performance metrics.

2. Uncertainty Handling Mechanisms: Incorporating explicit uncertainty assessment
for challenging classes only when needed, inspired by the specific strengths of the uncertainty-
aware prompt.

3. Original Annotation Guidelines: Integrating category definitions from the original
MEDIC dataset annotation instructions to clarify decision boundaries with inter-class
confusion (see Section E.1.4), including quantitative damage thresholds and specific de-
cision hierarchies for Humanitarian labels.
The full, final prompt is provided in Appendix E.3.
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Table 7.2: Model Performance Across Different Prompting Strategies (%)

Model Prompt Type

Direct Two Phase Elimination Uncertainty Weighted
Classification Analysis Reasoning Aware Option

Overall Accuracy (%)

Claude Haiku 80.5 78.2 75.1 78.9 74.5
Claude Sonnet 84.2 83.2 79.0 81.2 78.3
GPT-4o 87.2 84.8 83.8 86.0 83.9
Pixtral Large 82.2 81.7 80.3 81.1 80.4
Pixtral Small 77.9 76.2 75.2 77.2 79.4

Damage Severity Accuracy (%)

Claude Haiku 77.6 78.6 77.4 78.2 73.4
Claude Sonnet 84.2 81.0 78.0 79.0 77.6
GPT-4o 82.0 84.0 82.2 84.4 80.8
Pixtral Large 78.2 81.0 79.0 76.0 76.2
Pixtral Small 75.2 76.4 77.8 73.6 77.8

Informative Accuracy (%)

Claude Haiku 84.2 82.2 68.8 80.4 79.2
Claude Sonnet 87.4 87.4 83.2 86.2 82.0
GPT-4o 91.8 88.6 87.6 89.2 88.8
Pixtral Large 87.4 86.8 83.0 87.0 87.6
Pixtral Small 87.6 84.0 75.4 86.2 86.6

Humanitarian Accuracy (%)

Claude Haiku 79.2 74.0 75.0 76.0 69.4
Claude Sonnet 82.0 81.4 75.0 79.0 76.6
GPT-4o 86.4 82.2 79.6 84.4 79.6
Pixtral Large 82.8 78.6 79.2 80.8 79.0
Pixtral Small 75.0 71.0 70.8 72.6 74.0

Disaster Types Accuracy (%)

Claude Haiku 80.8 78.2 79.2 80.8 75.8
Claude Sonnet 83.0 83.2 80.0 80.6 77.0
GPT-4o 88.4 84.4 85.6 86.0 86.2
Pixtral Large 80.4 80.4 80.0 80.6 78.8
Pixtral Small 73.8 73.6 76.6 76.2 79.2

Zero-shot classification accuracy (%) of vision-language models across different prompting strategies on the
MEDIC dataset. For each model and task combination, the highest-performing prompt is highlighted in green.
The best model-prompt accuracy per task is shown in bold. Results demonstrate that Direct Classification
generally yields the strongest performance, though optimal prompting strategies vary by model and task. GPT-
4o consistently outperforms other models across most prompt types, while Claude Sonnet achieves competitive
results with the Direct Classification prompt.
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7.4 Zero-Shot Classification Results
In this section, we present the performance of our zero-shot classification approach using GPT-
4o with the final optimised prompt.

7.4.1 Zero-Shot Performance
Zero-shot performance was evaluated against the relabelled CNN baselines, using the full test set
of 15,687 images. As shown in Table 7.3, GPT-4o demonstrates competitive and often superior
performance across all four classification tasks, despite requiring no task-specific training.

GPT-4o achieves higher accuracy in every task category, with measurable advantage in
Disaster Types (88.1% vs 84.5%) and Damage Severity (87.2% vs 85.5%). When it comes to
F1 scores, which balance precision and recall, the results show a more nuanced picture. GPT-
4o achieves superior F1 scores for the Informative task (91.1%) and Disaster Types (83.4%).
However, for Humanitarian classification, despite having similar accuracy (86.8% vs 86.7%), the
zero-shot approach shows considerably lower F1 scores (75.0% vs 86.3%), indicating imbalanced
precision and recall for certain Humanitarian classes. The Damage Severity F1 score shows
similar issues, albeit less pronounced (79.9% vs. 84.3%).

Task CNN (Original) CNN LLM Zero-Shot

Accuracy F1 Accuracy F1 Accuracy F1

Damage Severity 83.1% 80.6% 85.5% 84.3% 87.2% 79.9%
Informative 88.6% 88.6% 90.2% 90.2% 90.8% 91.1%
Humanitarian 85.0% 84.6% 86.7% 86.3% 86.8% 75.0%
Disaster Types 81.9% 80.2% 84.5% 83.2% 88.1% 83.4%

Table 7.3: Comparison of classification performance between CNN (EfficientNet-B1) and LLM (gpt-
4o) zero-shot classification on the relabelled MEDIC dataset (see Chapter 5). For reference, we also
report the CNN performance on the original dataset.

The class-level breakdown in Table 7.4 reveals key strengths and limitations of the zero-shot
approach:

1. Damage Severity: GPT-4o classifies mild damage with far higher accuracy (81.1%
vs 26%), proving effective handling of categories with ambiguous boundaries. This middle
category—subjectively defined in disaster contexts—benefits from the vision model’s conceptual
understanding rather than the CNN’s pattern-matching approach.

2. Humanitarian Classification: Despite similar overall accuracy, GPT-4o underper-
forms in affected injured people (78.8% vs 97.0%) and rescue volunteering classes (64.5% vs
95.0%). This discrepancy likely stem from label overlap: many images contain both affected
people and rescue operations simultaneously, but only one label is deemed correct. CNNs may
have implicitly learned the annotation hierarchy through training, while GPT-4o lacks knowl-
edge of which class takes precedence when multiple are present. If this is the case, this issue
might be addressed in future work by improved task instructions, but it may be nontrivial due
to the tradeoff between instruction complexity and performance.

3. Disaster Types: GPT-4o performs substantially better with the other disaster category
(60% vs 14% correct classification). This heterogeneous category benefits from the model’s
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ability to generalise across diverse disaster scenarios poorly represented in the training data.

Table 7.4: Performance comparison between GPT-4o as a zero-shot classifier and EfficientNet-B1
trained on the relabelled dataset.

GPT-4o (Zero-Shot) EfficientNet-B1

Task/Class Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

Damage Severity 87.2% 79.9% 85.5% 84.3%
Little Or None 91.3% 94.3% 91.0% 93.0%
Mild 81.1% 60.8% 90.8% 35.8%
Severe 79.6% 84.7% 89.4% 81.4%

Informative 90.8% 91.1% 90.2% 90.2%
Not Informative 91.0% 91.4% 90.2% 90.6%
Informative 90.6% 90.9% 90.2% 89.8%

Humanitarian 86.8% 75.0% 86.7% 86.3%
Affected/Injured People 78.8% 57.3% 97.0% 53.6%
Infrastructure Damage 80.7% 86.2% 90.8% 86.7%
Not Humanitarian 93.7% 93.1% 90.6% 91.6%
Rescue/Volunteering 64.5% 63.3% 95.0% 57.5%

Disaster Types 88.1% 83.4% 84.5% 83.2%
Earthquake 88.3% 86.9% 95.3% 81.3%
Fire 94.8% 93.1% 97.9% 79.4%
Flood 93.4% 89.4% 97.0% 82.8%
Hurricane 77.9% 80.4% 94.4% 72.5%
Landslide 94.0% 84.1% 98.6% 72.5%
Not Disaster 90.8% 92.9% 90.5% 91.8%
Other Disaster 59.7% 56.7% 95.2% 24.2%

Performance comparison between GPT-4o as a zero-shot classifier and EfficientNet-B1 trained on the relabelled
dataset. The table shows metrics for each classification task and class. For tasks (in bold), accuracy represents
multi-class classification performance across all classes, while F1 score is the weighted average across classes.
For individual classes, accuracy shows binary classification performance (how well the model distinguishes that
class from all others), and F1 score measures the harmonic mean of precision and recall for that specific class.
The best performing score in each row is highlighted in green.

Examining the confusion matrices, representing the error patterns of these two approaches,
provides visual confirmation of these differing classification strategies (Figure 7.1). For instance,
the matrices clearly show GPT-4o’s superior handling of the ambiguous mild damage category
compared to the CNN’s tendency to misclassify it towards extremes.

In conclusion, the unexpectedly good performance of GPT-4o in certain tasks, particularly
those requiring nuanced visual understanding like mild damage assessment, demonstrates the
value of large multimodal models’ broader conceptual knowledge compared to task-specific
CNN training. While CNNs excel at pattern recognition within their training distribution,
they may struggle with qualitative concepts that benefit from a broader world model.
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Figure 7.1: Confusion matrices comparing GPT-4o (left) and EfficientNet-b1 trained on relabelled
dataset (right).

Disaster Types (GPT-4o)

Predicted
True quake fire flood hurr. land. none other

quake .88 .00 .00 .00 .02 .02 .06
fire .00 .95 .00 .00 .00 .01 .02

flood .00 .00 .93 .00 .00 .04 .01
hurr. .02 .00 .05 .77 .01 .08 .03
land. .02 .00 .00 .00 .93 .01 .00
none .01 .00 .01 .02 .00 .91 .02
other .10 .02 .03 .01 .02 .19 .60

Disaster Types (Relabelled)

Predicted
True quake fire flood hurr. land. none other

quake .86 .01 .00 .03 .00 .07 .00
fire .03 .85 .00 .01 .00 .06 .01

flood .02 .00 .80 .04 .01 .11 .00
hurr. .04 .02 .03 .73 .01 .13 .00
land. .06 .01 .03 .06 .74 .07 .00
none .01 .00 .01 .02 .00 .93 .00
other .24 .09 .02 .08 .01 .37 .14

Informativeness (GPT-4o)

Predicted
True not inf inf

not inf .90 .09
inf .07 .92

Informativeness (Relabelled)

Predicted
True not inf inf

not inf .89 .10
inf .08 .91

Humanitarian (GPT-4o)

Predicted
True injured infra not hum rescue

injured .80 .03 .13 .01
infra .06 .80 .07 .06

not hum .00 .03 .94 .01
rescue .11 .03 .20 .64

Humanitarian (Relabelled)

Predicted
True injured infra not hum rescue

injured .50 .25 .16 .07
infra .00 .89 .08 .01

not hum .00 .05 .91 .01
rescue .06 .24 .20 .49

Damage Severity (GPT-4o)

Predicted
True none mild severe

none .92 .05 .01
mild .07 .81 .11

severe .02 .17 .79

Damage Severity (Relabelled)

Predicted
True none mild severe

none .93 .01 .04
mild .27 .26 .45

severe .08 .03 .87

Confusion matrices comparing GPT-4o (left) and EfficientNet-b1 trained on relabelled dataset (right). GPT-4o
demonstrates strong performance across most classes, particularly excelling at “mild” damage classification (81%
vs 26%) and “Disaster Types” (especially “other disaster”: 60% vs 14%). The relabelled EfficientNet shows
stronger performance for “infrastructure” (89% vs 80%) and “severe” damage (87% vs 79%), but struggles
with the “mild” damage class. Dark blue cells indicate correct classifications, light blue cells show mediocre
performance, and red cells highlight problematic misclassifications.
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Chapter 8

Conclusions and Future Work

In this project, we set out to explore two distinct paths to improve image classification in crisis
informatics using modern generative AI approaches: synthetic data augmentation via image
generation models for fine-tuning CNNs, and zero-shot classification with large multimodal
models. Our primary goal was to assess whether these modern AI techniques could improve
the accuracy and robustness of systems designed to analyse disaster imagery, ultimately sup-
porting more effective humanitarian response. We measured success empirically by comparing
performance quantified by accuracy and F1 scores against MEDIC dataset benchmarks, fol-
lowing a methodology that included baseline replication, dataset relabelling, and systematic
evaluation of both approaches.

RQ1: Synthetic Data Augmentation. Our first research question investigated whether
synthetic data augmentation could improve the performance of fine-tuned CNNs on the MEDIC
benchmark. We developed a pipeline leveraging LLM-generated captions and diffusion models,
incorporating refined prompting strategies and allocating synthetic images towards underper-
forming, critical, or ambiguous classes.

Our synthetic data augmentation approach aimed at improving current classification per-
formance and potentially future-proofing models against domain shift. The in-domain results
showed modest improvement. For instance, mild damage F1 scores increased from 35.8% to
40.0%, while other disaster classification improved from 24.2% to 34.4%. While these gains
demonstrate the approach has merit, the overall results were disappointing, with no significant
difference in performance across the four main tasks to our baseline (relabelled) results. Over-
all, it is fair to conclude that our data augmentation pipeline yielded a null result. Still,
our work may provide valuable findings for understanding the current practical limits of this
augmentation strategy.

Two main issues hindered the effectiveness of our synthetic data generation pipeline. First,
content safety filters frequently blocked the generation of realistic disaster imagery involving
people. Second, our methods for promoting diversity did not produce the breadth of examples
needed. To improve this, we need more visibility into the classification regions that are failing:
using saliency or feature map approaches to specifically pinpoint the type of images that are
failing, and using this to improve our prompting, something we began to show in Figure 6.7,
but a deeper investigation is left for future work. Moreover, the core idea of making models
adaptable to unforeseen future disasters–—one of our primary motivations—–remains untested
due to the constraints of available data. Investigating this further will be essential in exploring
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the real potential for this approach.

RQ2: Zero-Shot Classification. Our second research question explored the potential of
using large multimodal models directly as zero-shot classifiers, bypassing traditional training
pipelines. We evaluated several models and prompt designs, ultimately focusing on GPT-4o
with an optimised prompt incorporating MEDIC annotation guidelines.

The findings here were significantly more promising. Zero-shot classification via large
multimodal models delivered unexpectedly strong results. Without any prior training
specific to our tasks, GPT-4o consistently matched or outperformed CNNs across all categories
in terms of classification accuracy. The most striking differences were in traditionally difficult
categories. For instance, GPT-4o correctly classified mild damage 81.1% of the time, whereas
CNNs managed only 26.0%. The other disaster category saw similar improvement: 60.0%
accuracy from GPT-4o compared to just 14.0% with CNNs. As mentioned earlier, these results
highlight a meaningful difference: large multimodal models such as GPT-4o can leverage their
broader understanding, while CNNs still exhibit advantages on some subclasses possibly due
to their ability to learn implicit patterns such as task-dependent label hierarchies. In sum, our
results distinctly show a considerable utilisation potential for large multimodal model in crisis
informatics, given that their overall performance is on par with—and at times substantially
better than—dedicated classification systems.

Limitations. While our work provides potentially useful insights into leveraging generative
AI for disaster image classification, several limitations should be acknowledged. Firstly, perfor-
mance remains capped by the MEDIC dataset’s inherent noise, class ambiguities (even post-
relabelling), and its social media origin scope. Building a better dataset is a major endeavour,
with also potential ethical issues as discussed in Section 2.7. Relatedly, our LLM-assisted
relabelling was conservative, non-exhaustive, and potentially biased by the specific prompts
and models chosen for judging. A more comprehensive approach would include expert human
annotators to double-check the LLM outputs.

We already addressed the modest gains of our data augmentation pipeline, and several of
our choices could potentially be improved to yield better results, in particular perhaps a larger
number, and better allocation, of synthetic images.

Finally, our study focused only on assessing classification metrics such as accuracy and F1
scores, but several other factors impact model usability, such as speed, cost, and interpretabil-
ity. For example, our strong zero-shot results relied on proprietary GPT-4o model, limiting
accessibility due to cost and deployment constraints. Conversely, open-weights smaller models
lagged behind, so they may not be as competitive as their CNN counterparts, at least for now.

Future Work. Several directions for future work stand out. To test our hypothesis about
adaptability, future research should evaluate synthetic-augmented models against new datasets
specifically designed to introduce domain shifts, perhaps featuring recent disaster events or
underrepresented locations. It is also worth exploring ensemble methods combining low-cost,
fast CNNs for easier classification tasks with multimodal foundation models as a fallback for
more difficult classifications, to achieve the best of both worlds.

While this project explored zero-shot performance, providing large multimodal models with
small sets of representative examples (few-shot calibration) could also improve accuracy, es-
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pecially for categories prone to ambiguity or where there is a classification hierarchy (scenes
showing both impacted people and rescue efforts, for example).

Given the scope of the project, we limited our analysis to large multimodal models ac-
cessible via API, but fast advances in the field means that powerful multimodal models with
performance comparable to GPT-4o may be soon available to be deployed locally. This would
also allow users to access the internals of the models, opening the black-box for more nuanced
analyses and understanding of failure cases.

Concluding Remarks. This work makes three contributions to crisis informatics. As an
aside, it demonstrates the effectiveness of LLM-based relabelling for improving classification
performance. It establishes a synthetic data pipeline that may provide a foundation for ad-
dressing data imbalance. Most significantly, it provides compelling evidence that zero-shot
classification with large multimodal models can outperform traditionally trained CNNs in the
especially challenging domain of disaster image classification—characterised by heterogeneous
data, subjective categories, and difficult edge cases.

In particular, the ability of GPT-4o to match or surpass carefully trained CNNs in multiple
tasks, especially on challenging categories, represents a new paradigm to explore for crisis
response systems. This approach eliminates the data collection and annotation bottleneck that
typically constrains model development in specialised fields, enabling more rapid deployment
of classification systems during emergencies. However, it is important to highlight that large
multimodal models are often proprietary, expensive and slow, while CNNs are fast and can
easily be deployed locally, so both approaches still have merit.

In conclusion, combining the complementary strengths of CNNs and foundation models
offers a promising path forward for crisis informatics applications, offering modern techniques to
support more effective resource allocation during crises, potentially improving response efforts
when communities are most vulnerable.
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Appendix A: Methods Details

A.1 Model Training and Evaluation
We follow the training and evaluation procedures from the original MEDIC dataset benchmarks,
focusing on multi-task classification metrics. We employ identical train, validation, and test
splits to the original, with no overlap across sets.

Given an image x, let the ground-truth labels be y(1), y(2), y(3), y(4).

A multi-task model f(x; θ) produces ŷ(1), ŷ(2), ŷ(3), ŷ(4), one for each task.
(A.1)

This formulation represents our multi-task learning approach where a single model simulta-
neously predicts outputs for all four classification tasks, sharing feature extraction capabilities
across the tasks while maintaining task-specific prediction heads.

Thus, the multi-task loss for an image x is:

L(θ) =
4∑

t=1
αtℓ

(
ŷ(t), y(t)

)
, (A.2)

where ℓ is the cross-entropy loss for each task t, and αt are optional weighting factors that can
be tuned to prioritise certain tasks if needed. In our training, tasks are not weighted (αt = 1).

We use the standard cross-entropy loss for each classification task:

ℓ
(
ŷ(t), y(t)

)
= −

Ct∑
c=1

1

[
y(t) = c

]
log

(
p(t)

c

)
,

where p(t)
c = softmax

(
ŷ(t)

)
c
,

(A.3)

where 1[y(t) = c] is the indicator function that equals 1 when the ground-truth label y(t) equals
class c, and 0 otherwise.

A.2 Performance Metrics
For evaluation metrics, we compute class-specific precision and recall:

precisionc = TPc

TPc + FPc

,

recallc = TPc

TPc + FNc

.

(A.4)
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Where TPc, FPc, FNc refer to true positives, false positives, and false negatives for class c.
The F1 score for each class combines precision and recall into a single metric:

F1c = 2 × precisionc × recallc
precisionc + recallc

. (A.5)

To assess overall model performance across all classes, we use the macro-averaged F1 score:

F1macro = 1
C

C∑
c=1

F1c, (A.6)

where C is the number of classes within a single task, or the total number of relevant categories
when computing across tasks. This metric treats all classes equally regardless of their frequency
in the dataset.

A.3 Hardware and Software Configuration
The following details our complete experimental setup used throughout this research:

• Hardware:

– GPU: Single NVIDIA RTX 3070 Laptop GPU
– CPU: Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz
– RAM: 32GB

• Software stack:

– Python: Version 3.12.
– PyTorch: Version 2.3.1 employed as our principal deep learning framework.
– CUDA (Nvidia): Version 12.1 for GPU-accelerated training
– DALI (Nvidia): Version CUDA 120. GPU data processing pipeline for image I/O

operations
– Diffusion models:

∗ Stable Diffusion 1.6 / 3.5 (Stability AI): stable-diffusion-v1-6, sd3.5-medium
endpoints.

∗ Black Forest FLUX 1.0-dev: /v1/flux-dev

– LLM APIs:

∗ Anthropic Claude:

· 3.5 Sonnet (claude-3-5-sonnet-20241022)
· 3.7 Sonnet (claude-3-7-sonnet-20250219)
· 3.5 Haiku (claude-3-5-haiku-20241022)

∗ OpenAI GPT: 4o vision enabled (gpt-4o-2024-08-06)
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A.4 Common Tools and Techniques
CNN Architectures Overview

Building on prior MEDIC benchmarks (Alam et al., 2023), we focus on three mainstream CNN
families:

1. ResNet (ResNet-50): A classic backbone offering strong general performance. In code,
we rely on TorchVision’s pre-trained weights to initialise the training, full fine-tune, then
swap fully connected layer for multi-task heads.

2. EfficientNet (B1 variant): Known for an excellent accuracy–computational-efficiency
trade-off.

3. MobileNet V2: Specially designed for computationally constrained environments, in-
cluded here to address real-world concerns of deployment on edge devices.

Image Generation Model Specifications

To create additional disaster imagery, we adopt Stable Diffusion (SD) version 1.6 and 3.5, and
Flux 1-dev. Key hyperparameters include:

• Resolution: 320×320 or 512×512. We aim for cost efficiency, knowing that all images
are rescaled to 256×256 prior to training.

• Diffusion steps: 30.
• Classifier-free guidance scale: Ranging from 6.5 to 8.0, controlling how closely the

generated images adhere to the textual prompt.
• Sampler: Euler ancestral.
• Safety Tolerance: Flux 1-dev allows the user to implement a safety filter in terms of

content generation. We begin at a level of 4 (6 being the most permissive), then allow up
to 5 in cases where the model initially rejects the request.
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Appendix B: Baseline CNN Results

B.1 Performance Metrics by Model

Table B.1: Performance comparison across RN50, EN-B1, and MN-V2, grouped by metric.

Accuracy (%) F1 (%) Precision (%) Recall (%)

Task/Class RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2

Dmg. Sev. 82.7 83.1 81.9 79.6 80.6 78.9 79.6 80.5 79.2 82.7 83.1 81.9
Little/None – – – 91.3 91.9 90.7 88.8 90.2 89.0 94.0 93.6 92.5
Mild – – – 9.3 15.4 9.8 41.2 42.2 42.5 5.2 9.4 5.6
Severe – – – 76.3 76.4 75.0 70.3 69.9 67.9 83.4 84.3 83.8

Inform. 88.2 88.6 87.1 88.2 88.6 87.2 88.2 88.8 87.3 88.2 88.6 87.1
Not Info. – – – 89.1 89.2 87.8 89.3 91.4 90.1 88.8 87.1 85.6
Info. – – – 87.2 87.9 86.4 86.9 85.6 84.0 87.4 90.4 88.9

Humanit. 84.4 85.0 83.6 83.6 84.6 82.4 83.4 84.4 82.5 84.4 85.0 83.6
Affected People – – – 42.4 47.3 43.6 60.1 54.8 55.0 32.7 41.6 36.2
Infra. Dam. – – – 83.1 84.3 82.4 81.7 81.6 78.6 84.6 87.1 86.7
Not Hum. – – – 89.8 90.4 89.3 88.2 90.7 88.5 91.5 90.1 90.1
Rescue – – – 42.6 44.0 26.3 53.4 50.1 57.7 35.4 39.3 17.1

Dis. Types 80.8 81.9 79.4 78.6 80.2 76.6 80.3 81.9 78.5 80.8 81.9 79.4
Quake – – – 75.5 76.6 74.1 71.7 71.9 68.8 79.7 81.9 80.3
Fire – – – 79.7 79.4 74.8 77.3 76.0 71.7 82.3 83.0 78.1
Flood – – – 78.2 81.1 78.4 78.3 80.7 78.1 78.1 81.5 78.8
Hurr. – – – 62.5 65.3 60.7 65.3 64.9 62.2 59.9 65.7 59.2
Land. – – – 67.6 69.0 66.1 67.5 63.5 63.8 67.7 75.5 68.6
Not Dis. – – – 90.0 90.9 89.3 86.0 88.4 85.7 94.5 93.5 93.2
Other – – – 18.9 26.2 5.3 78.0 79.4 68.1 10.7 15.7 2.8

RN50: ResNet50, EN-B1: EfficientNet-B1, MN-V2: MobileNet-V2

For each task (in bold), Accuracy (%) is the multi-class classification accuracy, while F1, Precision, and Recall
represent the macro- or weighted-averaged performance across all classes in that task. Best-performing model
scores in each row–metric combination are highlighted in dark green.

Overall, EfficientNet-B1 demonstrates slightly stronger performance than ResNet50 and
MobileNet-V2 across most tasks, particularly in terms of F1 scores and recall. For example,
under the Damage Severity task, it achieves the highest accuracy (83.1%), along with superior
recall (83.1%) and the highest macro-average F1 (80.6%). It also has a consistent advantage
for the Humanitarian task and its sub-classes, especially affected people (47.3% F1) and not
humanitarian (90.4% F1). While MobileNet-V2 has certain strengths—for instance, higher
precision for the “Mild” class (42.5%)—it generally lags behind the other two architectures
across most rows.
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B.2 Calibration Curves

Figure B.1: Calibration curves for all baseline models across the four classification tasks: Damage
Severity, Informative, Humanitarian, and Disaster Types.

The calibration curves show generally good alignment between predicted probabilities and
actual outcomes across all tasks. The Damage Severity task exhibits consistent calibration for
both mild and severe classes, with slight overconfidence in the middle probability ranges. For
the Informative task, our models demonstrate near-perfect calibration with minimal deviation
from the ideal curve. The Humanitarian task shows more variability, particularly for the
infrastructure and utility damage class, which displays some underconfidence in the 0.4-0.6
probability range. Finally, in the Disaster Types task, the other disaster class shows the most
notable deviation, with significant underconfidence in predictions around the 0.5 probability
threshold. These results suggest that while our baseline models are generally well-calibrated,
certain minority classes may benefit from targeted calibration improvements.
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Appendix C: Relabelling

C.1 Relabelling Prompts
The prompt used for relabelling images is shown in Figure C.1.
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You are classifying an image according to four tasks.
Each task must have exactly one label from the provided list.
If multiple disasters appear, please choose the single most prominent one.
For damage severity, if a structure is partially damaged but still usable,
label it \emph{mild}; if it is largely destroyed or unsafe to use, label it ’severe

’.

TASK 1: "damage_severity"
- little_or_none: no visible disaster damage or extremely minimal.
- mild: partial structural damage (e.g. up to ˜50% damage, partly collapsed roof).
- severe: significant destruction (structure no longer usable or mostly collapsed).

TASK 2: "informative"
- not_informative: not helpful for disaster relief (random images, ads, blurred,

etc.).
- informative: clearly shows disaster impact, damage, or relief efforts.

TASK 3: "humanitarian"
- affected_injured_or_dead_people: the image shows people who are physically harmed

, displaced, or casualties.
- infrastructure_and_utility_damage: visible damage to buildings, roads, power

lines, etc.
- not_humanitarian: does not show anything relevant for disaster relief.
- rescue_volunteering_or_donation_effort: depicts active rescue, donation, or

volunteering.

TASK 4: "disaster_types"
- earthquake: collapsed buildings/roads typical of seismic activity.
- fire: noticeable flames, smoke, or burnt structures.
- flood: submerged roads/buildings, high water level.
- hurricane: storm surge, strong wind damage, fallen power lines/trees.
- landslide: fallen earth/rock, mudslides, collapsed ground.
- not_disaster: the image does not show any disaster.
- other_disaster: any other catastrophe (explosion, vehicle crash, war, etc.).

Return only a JSON object with exactly these four keys:
{

"damage_severity": "...",
"informative": "...",
"humanitarian": "...",
"disaster_types": "..."

}
using only the allowed label strings above. No additional text or explanation.

Figure C.1: Image classification task instructions with label definitions

62



C.2 Relabelling Results

Table C.1: Performance comparison across RN50, EN-B1, and MN-V2 on the relabelled dataset,
grouped by metric.

Accuracy (%) F1 (%) Precision (%) Recall (%)

Task/Class RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2

Dmg. Sev. 84.6 85.5 84.5 82.8 84.3 82.7 82.9 84.3 82.8 84.6 85.5 84.5
Little/None – – – 92.3 93.0 92.0 90.1 92.2 89.9 94.6 93.8 94.3
Mild – – – 28.4 35.8 29.4 55.0 55.6 55.5 19.2 26.4 20.0
Severe – – – 80.1 81.4 79.9 75.8 76.0 75.7 84.8 87.5 84.6

Inform. 89.8 90.2 88.7 89.8 90.2 88.7 89.8 90.3 88.7 89.8 90.2 88.7
Not Info. – – – 90.4 90.6 89.2 90.1 92.2 89.8 90.7 89.1 88.6
Info. – – – 89.2 89.8 88.1 89.5 88.2 87.4 88.8 91.5 88.7

Humanit. 85.8 86.7 85.3 85.2 86.3 84.7 85.1 86.3 84.5 85.8 86.7 85.3
Affected People – – – 51.1 53.6 48.0 64.8 56.8 59.9 42.2 50.8 40.0
Infra. Dam. – – – 85.4 86.7 85.1 83.3 83.8 83.4 87.7 89.8 86.9
Not Hum. – – – 90.9 91.6 90.6 89.8 91.7 89.4 92.0 91.5 91.8
Rescue – – – 54.7 57.5 52.9 66.1 68.7 62.5 46.7 49.4 45.9

Dis. Types 83.8 84.5 83.0 82.2 83.2 81.4 83.2 84.0 82.5 83.8 84.5 83.0
Quake – – – 80.1 81.3 80.5 76.0 77.0 75.9 84.7 86.2 85.7
Fire – – – 81.9 79.4 78.5 82.4 74.0 74.7 81.5 85.6 82.7
Flood – – – 81.0 82.8 81.2 83.7 85.0 86.2 78.5 80.7 76.8
Hurr. – – – 70.2 72.5 68.2 71.7 71.4 69.5 68.7 73.5 66.9
Land. – – – 73.1 72.5 69.1 77.4 70.4 68.7 69.3 74.8 69.6
Not Dis. – – – 91.2 91.8 90.7 87.9 90.3 87.8 94.7 93.3 93.7
Other – – – 18.0 24.2 16.2 74.1 69.2 71.8 10.2 14.7 9.1

RN50: ResNet50, EN-B1: EfficientNet-B1, MN-V2: MobileNet-V2

For each task (in bold), Accuracy (%) is the multi-class classification accuracy, while F1, Precision, and Recall
represent the macro- or weighted-averaged performance across all classes in that task. Best-performing model
scores in each row–metric combination are highlighted in dark green.

In these results, all three convolutional neural networks — ResNet50, EfficientNet-B1, and
MobileNet-V2 — are trained on the relabelled dataset, improving class definitions. While all
models achieve strong performance, EfficientNet-B1 again outperforms its counterparts for most
tasks and classes, notably in the Damage Severity and Humanitarian tasks, often achieving
higher recall and F1 scores. Nonetheless, ResNet50 occasionally records the highest recall or
precision on certain classes (e.g. little or none fire, not humanitarian, and other disaster,).
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Task/Class
Accuracy F1 Score

RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2
Damage Severity 84.6% 85.5% 84.5% 82.8% 84.3% 82.7%

Little Or None 89.9% 91.0% 89.6% 92.3% 93.0% 92.0%
Mild 90.6% 90.8% 90.6% 28.4% 35.8% 29.4%
Severe 88.8% 89.4% 88.7% 80.1% 81.4% 79.9%

Informative 89.8% 90.2% 88.7% 89.8% 90.2% 88.7%
Not Informative 89.8% 90.2% 88.7% 90.4% 90.6% 89.2%
Informative 89.8% 90.2% 88.7% 89.2% 89.8% 88.1%

Humanitarian 85.8% 86.7% 85.3% 85.2% 86.3% 84.7%
Affected/Injured People 97.3% 97.0% 97.1% 51.1% 53.6% 48.0%
Infrastructure Damage 90.0% 90.8% 89.8% 85.4% 86.7% 85.1%
Not Humanitarian 89.6% 90.6% 89.2% 90.9% 91.6% 90.6%
Rescue/Volunteering 94.7% 95.0% 94.4% 54.7% 57.5% 52.9%

Disaster Types 83.8% 84.5% 83.0% 82.2% 83.2% 81.4%
Earthquake 95.0% 95.3% 95.1% 80.1% 81.3% 80.5%
Fire 98.3% 97.9% 97.9% 81.9% 79.4% 78.5%
Flood 96.7% 97.0% 96.8% 81.0% 82.8% 81.2%
Hurricane 94.1% 94.4% 93.7% 70.2% 72.5% 68.2%
Landslide 98.8% 98.6% 98.5% 73.1% 72.5% 69.1%
Not Disaster 89.6% 90.5% 89.0% 91.2% 91.8% 90.7%
Other Disaster 95.2% 95.2% 95.1% 18.0% 24.2% 16.2%

RN50: ResNet50, EN-B1: EfficientNet-B1, MN-V2: MobileNet-V2
Table C.2: Performance comparison of CNN architectures across multi-task classification metrics,
trained on the relabelled image dataset. Best results for each metric are highlighted in green.

The performance of CNN architectures (ResNet50, EfficientNet-B1, and MobileNet-V2)
has notably improved across all classification tasks after training on the relabelled image
dataset. For the Damage Severity task, overall accuracy increased from 83.1% to 85.5% with
EfficientNet-B1, with particularly significant improvement in the F1 score for the ”Mild” dam-
age class (from 15.4% to 35.8%), suggesting better discrimination of moderate damage condi-
tions. The Informative classification task showed modest improvements in both accuracy and
F1 scores, increasing from 88.6% to 90.2% accuracy with EfficientNet-B1. In the Humanitarian
task, performance improved across all metrics, with notable enhancement in the F1 scores for
the ”Affected/Injured People” class (from 47.3% to 53.6%) and ”Rescue/Volunteering” class
(from 44.0% to 57.5%), indicating better practical utility in these critical disaster response
categories. For Disaster Types classification, the relabelled dataset yielded better performance,
especially for the challenging ”Other Disaster” class where the F1 score with EfficientNet-B1 re-
mained low but still improved from 26.2% to 24.2%. Overall, the relabelled dataset has enabled
more robust model performance, with average improvements of approximately 2-4 percentage
points in accuracy and 3-5 percentage points in F1 scores across the tasks.
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Appendix D: Synthetic Augmentation

D.1 Preliminary Experiments

Our preliminary experiments aimed at finding the best-performing setup for generating syn-
thetic disaster images belonging to desired class labels. In particular, we evaluated three prompt
designs (Näıve, Structured, and Multistage), three LLM captioners (Claude-3.7-sonnet, GPT-4o,
Claude-3.5-haiku), and three diffusion models (Stable Diffusion-1.6, Stable Diffusion-3.5, Flux
1-dev). Tests included three real images and one hypothetical scenario per class combination,
ensuring comprehensive coverage (360 examples). We used two multimodal LLMs (GPT-4o,
Claude-3.7-Sonnet) to verify generated-image alignment against intended labels. This prelimi-
nary experiment was crucial for identifying effective prompting strategies and model combina-
tions early in our experimental pipeline.

Table D.1 summarises the diffusion models’ average alignment accuracy. Flux 1-dev out-
performed the newer SD-3.5, which frequently generated overly dramatic or incomplete scenes
and exhibited content policy rejections.

Diffusion Model Overall Accuracy (%)

Flux 1-dev 58.1 ± 0.9
SD-1.6 51.0 ± 0.9
SD-3.5 54.6 ± 0.9

Table D.1: Overall label-alignment accuracy (%) across diffusion models, aggregated across prompts
and LLMs (mean ± SEM across 3,240 test examples).

Focusing now on the best diffusion model, prompt design comparison (Table D.2) revealed
that Multistage prompts, encouraging detailed stepwise visual descriptions, achieved the high-
est alignment accuracy. Structured prompts were moderately successful, while simpler Näıve
prompts suffered from ambiguity, aligning with findings from Renze and Guven (2024). See
Appendix D.2.1 for detailed prompt examples.

Finally, comparing LLM caption generators for the best diffusion model and prompt type
(Table D.3), Claude-3.7-sonnet demonstrated superior prompt coherence and higher alignment
accuracy than Claude-3.5-haiku, and marginally better than GPT-4o. However, no model fully
eliminated prompt-image content discrepancies.
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Prompt Type Overall Accuracy (%)

Näıve 56.7 ± 1.5
Structured 57.3 ± 1.5
Multistage 60.2 ± 1.5

Table D.2: Overall accuracy (%) of Flux 1-dev generated images by prompt design, aggregated across
LLMs (mean ± SEM across 1,080 test examples).

LLM Variant Overall Accuracy (%)

Claude-3.5-haiku 55.8 ± 2.6
GPT-4o 60.3 ± 2.6
Claude-3.7-sonnet 63.6 ± 2.6

Table D.3: Overall accuracy (%) across LLM-generated prompts for Flux 1-dev generated images
using the multistage prompt (mean ± SEM across 360 test examples).

D.2 Image Captioning Prompts

D.2.1 Initial Prompts Tested
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From Image, Structured

Describe ONLY the visible elements using EXACTLY this format:

MEDIA TYPE: [Photograph/Screenshot/Article/Post/Diagram]
TECHNICAL: [camera angle, lighting, quality - max 10 words]
SCALE: [exact measurements of visible area/distance/size]
-- Must use numbers (feet/meters/stories/etc.)
-- Must specify total area visible
-- Must note size of main elements

DISASTER TYPE EVIDENCE:
-- List specific visual indicators of disaster cause/type
-- If uncertain, state "Cause not visually definitive"
-- DO NOT speculate beyond visual evidence

DAMAGE ASSESSMENT:
-- Severe = List non-functional/unsafe features (collapse, complete destruction)
-- Mild = List partial damage (cracks, broken windows, partial collapse)
-- Little/None = List superficial effects (debris, minor marks) or state ’No damage

visible’

PRIMARY ELEMENTS: [max 30 words]
-- List main subjects/objects
-- Note any people/activities
-- Include key infrastructure

ENVIRONMENT: [max 20 words]
-- Setting type
-- Weather/conditions
-- Notable features
-- Visible signage/identifiers

VERIFICATION:
-- If this is NOT a disaster/emergency scene, respond ONLY with:

"NON-DISASTER IMAGE: [brief factual description of actual content]"

RULES:
-- NO explanation of how you’re following rules
-- NO dramatic language ("devastating", "catastrophic", etc.)
-- NO speculation about areas outside frame
-- ONLY describe what is physically visible
-- Use specific measurements

Figure D.1: ’Structured’ test prompt for captioning an image
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From Image, Multistage

Analyse this image through a step-by-step process:

STAGE 1 - INVENTORY:
List ALL visible elements in the image
-- Note people, objects, infrastructure, environmental features
-- Include rough count of each element type
-- Do NOT interpret or classify yet

STAGE 2 - CATEGORIZATION:
-- Determine media type (photo, screenshot, etc.)
-- Identify setting type (urban, rural, indoor, etc.)
-- If NOT a disaster scene, state "NON-DISASTER IMAGE" and briefly describe content
-- If disaster-related, continue to next stages

STAGE 3 - MEASUREMENTS:
-- Estimate key dimensions using numbers (area, distances, etc.)
-- Distances between important elements
-- Depth of any water, height of any flames, etc.

STAGE 4 - CONDITION ASSESSMENT:
-- Damage severity (Severe/Mild/Little-None)
-- For severe: List non-functional/unsafe elements
-- For mild: List partially damaged elements
-- For little/none: List superficial effects or "No damage visible"

STAGE 5 - DISASTER INDICATORS:
-- Identify visual markers indicating disaster type
-- Note conflicting or ambiguous indicators
-- Avoid speculation beyond visible evidence

STAGE 6 - ENVIRONMENTAL CONTEXT:
-- Weather/atmospheric conditions
-- Time of day indicators
-- Surrounding terrain/setting characteristics
-- Maintain objectivity throughout; avoid dramatic terms.

Figure D.2: ’Multistage’ test prompt for captioning an image
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From Image, Näıve

Please describe this image in detail. What can you see in the picture?
What type of disaster is it (if any)? How bad is the damage?
Are there people visible and what are they doing? Where was this taken?

Figure D.3: ’Näıve’ test prompt for captioning an image
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From Labels, Structured

Using labels [type, severity, humanitarian, informative], describe:

SETTING: [location type, exact measurements of area]

DISASTER TYPE CHARACTERISTICS:
-- Visual elements specific to this disaster type
-- Physical manifestations unique to this event type
-- Scale and scope indicators

DAMAGE LEVEL:
-- Severe = List specific non-functional elements
-- Mild = List specific partial damage
-- Little/None = List minor effects or state ’none’

VISIBLE ELEMENTS:
-- Count of people/vehicles
-- Specific infrastructure
-- Exact measurements
-- Key activities

ENVIRONMENT:
-- Weather/conditions
-- Notable features
-- Visible markers

HUMANITARIAN ASPECTS:
-- Response activities visible
-- Aid-related elements
-- Human impact indicators

Use neutral language. NO dramatic terms. Only describe elements that could be
physically visible in a photograph.

Figure D.4: ’Structured’ test prompt for describing a hypothetical scenario
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From Image, Multistage

Using the provided labels [type, severity, humanitarian, informative], construct a
realistic disaster scene:

STAGE 1 - LOCATION FRAMEWORK:
-- Establish the physical setting
-- Define geographical context (urban/rural/coastal/etc.)
-- Establish scale with specific measurements (area dimensions)
-- Identify key environmental characteristics
-- Describe baseline infrastructure before impact

STAGE 2 - IMPACT VISUALIZATION:
-- Detail the disaster’s physical manifestation
-- Incorporate weather/atmospheric conditions typical of this event
-- Describe physical processes currently active or recently occurred
-- Add sensory details visible in a photograph (not sounds/smells)

STAGE 3 - DAMAGE SPECIFICATION:
-- Match damage severity precisely to the label (severe, mild, etc.)
-- For severe: structural failures, non-functional elements
-- For mild: partial damage with specifics
-- For little/none: minimal effects consistent with event

STAGE 4 - HUMAN ELEMENTS:
-- Populate with realistic human presence
-- Specific number of individuals, roles/activities
-- Appropriate emergency vehicles/equipment if needed
-- Ensure activities match both disaster type and humanitarian label

STAGE 5 - RESPONSE INTEGRATION:
-- For rescue/volunteering: include response activities/equipment
-- For affected/injured: medical response elements
-- For infrastructure damage: utility workers, assessment teams
-- For not_humanitarian: exclude organized response

STAGE 6 - VISUAL COHESION:
-- Verify single camera perspective
-- Check internal consistency of measurements
-- Ensure environment matches across all stages
-- Remove elements not physically visible

Figure D.5: ’Multistage’ test prompt for describing a hypothetical scenario
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From Labels, Naive

-- Imagine a scene showing this type of disaster (if any).
-- What would it look like? Describe the location, the damage you might see,
-- and any people who might be there. What would the overall scene look like?
-- Try to make it realistic and detailed so someone could visualize it clearly.

Figure D.6: ’Näıve’ test prompt for describing a hypothetical scenario

Fallback 1

This image is part of a public disaster response dataset used to train humanitarian
aid ML systems.

-- All images are from public sources, and any individuals remain completely
anonymous.

-- Please provide a factual, respectful description focusing on the scene and
humanitarian response aspects.

Use professional, neutral language and avoid graphic details.

Figure D.7: First fallback prompt upon an initial refusal to describe an image for senstitive content
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Fallback 2

I understand your caution with sensitive content.
To clarify: This is part of a machine learning research project for disaster

response and humanitarian aid.
The image is from public sources (news/humanitarian organizations), and all

individuals remain anonymous. The description you provide will:
1) Never be public
2) Only be used to generate synthetic training data for disaster response AI
3) Help improve automated systems that assist in disaster recovery and aid

distribution.
Please provide a careful, professional description using appropriate medical/

emergency response terminology.
Focus on: -- Response activities -- General scene description -- Professional

distance in descriptions -- Factual, non-sensational language.
Avoid graphic details while maintaining the essential information needed for

disaster response training.

Figure D.8: Second fallback prompt upon an second refusal to describe an image for sensitive content
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D.2.2 Refined Prompts
In our refined approach, we split each prompt into two sections: an Analysis block (not passed
to the diffusion model) and a Caption block (actually passed to the model). The <analysis>
block is used for LLM “thinking,” while only the <caption> block is fed to the diffusion model.
If both the main prompt and these fallback prompts fail, we skip generating that particular
image to avoid forcibly eliciting disallowed or overly graphic content.

Below are the final prompt texts for real, hypothetical, and fallback usage types.

From Labels, Refined

# Task description

## Analysis

Describe ONLY the visible elements of the provided image using EXACTLY this format:

<analysis>
MEDIA TYPE: [Photograph/Screenshot/Article/Post/Diagram]

TECHNICAL: [camera angle, lighting, quality - max 10 words]

SCALE: [exact measurements of visible area/distance/size]
- Must use numbers (feet/meters/stories/etc.)
- Must specify total area visible
- Must note size of main elements

DISASTER TYPE EVIDENCE:
- List specific visual indicators of disaster cause/type
- If uncertain, state "Cause not visually definitive"
- DO NOT speculate beyond visual evidence

DAMAGE ASSESSMENT:
- Severe = List non-functional/unsafe features (collapse, complete destruction)
- Mild = List partial damage (cracks, broken windows, partial collapse)
- Little/None = List superficial effects (debris, minor marks) or state ’No damage

visible’

PRIMARY ELEMENTS: [max 30 words]
- List main subjects/objects
- Note any people/activities
- Include key infrastructure

ENVIRONMENT: [max 20 words]
- Setting type
- Weather/conditions
- Notable features
- Visible signage/identifiers
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</analysis>

IMPORTANT: If this is NOT a disaster/emergency scene, respond ONLY with: "NON-
DISASTER IMAGE: [brief factual description of actual content]"

RULES:
- Use OBJECTIVE, MEDICAL language if there are injured people.
- NO explanation of how you’re following rules
- NO dramatic language (’devastating’, ’catastrophic’, etc.)
- NO speculation about areas outside frame
- ONLY describe what is physically visible
- Use specific measurements

Provide your structured analysis in <analysis></analysis> tags.

## Caption

After that, write a full descriptive caption for the provided image following your
analysis.

- Make sure to weave ALL the elements of your analysis into the image caption.
- If NON-DISASTER IMAGE, provide the factual description you wrote of the image

content.
- This image caption MUST be self-contained as it will be passed to an AI image

generator.
- Output the caption inside <caption></caption> brackets.

Your output should ONLY be a <analysis></analysis> block followed by a <caption>
</caption> paragraph.

Figure D.9: Refined prompt for captioning images, following a reasoning then captioning approach
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From Labels, Refined

# Task description

## Analysis

Using labels [type, severity, humanitarian, informative], imagine a scene. It may be
a disaster, aftermath of one or not disaster related at all, depending on the

labels you have received. If the label is not\ informative, do not imagine a
scene, instead imagine a cartoon, advert, social media post, text based tweet,
etc... that is not useful for humanitarian aid or disaster responders, although
MAY be relevant to the disaster described (e.g. earthquake safety tips, maps of
hurricane paths...).

Get inspiration from the keywords listed at the end.

Now describe the scene in EXACTLY this format:

<analysis>
SETTING: [location type, exact measurements of area]

DISASTER TYPE CHARACTERISTICS (if disaster):
- Visual elements specific to this disaster type
- Physical manifestations unique to this event type
- Scale and scope indicators

DAMAGE LEVEL:
- Severe = List specific non-functional elements (collapse, complete destruction,

buildings, roads or other amenities totally unusable)
- Mild = List specific partial damage: partially destroyed buildings, bridges,

houses, roads with damage <40%
- Little/None = List minor effects or state ’none’

VISIBLE ELEMENTS:
- Count of people/vehicles
- Specific infrastructure
- Exact measurements
- Key activities

ENVIRONMENT:
- Weather/conditions
- Notable features
- Visible markers

HUMANITARIAN ASPECTS (if any):
- Use OBJECTIVE, MEDICAL, NEUTRAL language if there are injured people.
- Response activities visible
- Aid-related elements
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- Human impact indicators

Use neutral language. NO dramatic terms. Only describe elements that could be
physically visible in a photograph.

RULES:
- Use OBJECTIVE, MEDICAL, language if there are injured people.
- NO explanation of how you’re following rules
- NO dramatic language (’devastating’, ’catastrophic’, etc.)
- NO speculation about areas outside frame
- ONLY describe what is physically visible
- Use specific measurements

Provide your structured analysis in <analysis></analysis> tags.

## Caption

After that, write a full descriptive caption for the provided image following your
analysis.

- Make sure to weave ALL the elements of your analysis into the image caption.
- This image caption should be self-contained as it will be passed to an AI image

generator.
- Output the caption inside <caption></caption> brackets.

Your output should ONLY be a <analysis></analysis> block followed by a <caption>
</caption> paragraph.

Figure D.10: Refined prompt for describing a hypothetical scenario, following a reasoning then
captioning approach
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D.3 Augmented Dataset Results

Table D.4: Performance comparison across RN50, EN-B1, and MN-V2 on the augmented dataset,
grouped by metric.

Accuracy (%) F1 (%) Precision (%) Recall (%)

Task/Class RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2 RN50 EN-B1 MN-V2

Dmg. Sev. 84.6 85.3 84.2 83.3 84.6 83.0 82.9 84.3 82.7 84.6 85.3 84.2
Little/None – – – 92.1 92.8 92.0 89.7 92.1 90.9 94.6 93.5 93.1
Mild – – – 34.8 40.0 33.3 51.7 51.0 50.1 26.3 32.9 25.0
Severe – – – 80.0 81.2 79.6 78.1 77.8 75.1 82.0 84.9 84.6

Inform. 89.0 89.8 88.6 89.0 89.8 88.6 89.1 89.9 88.7 89.0 89.8 88.6
Not Info. – – – 89.3 90.2 89.2 91.4 91.9 89.8 87.3 88.4 88.5
Info. – – – 88.6 89.4 88.0 86.5 87.6 87.4 90.8 91.3 88.7

Humanit. 85.0 86.1 84.7 84.7 85.9 84.1 84.6 85.9 83.9 85.0 86.1 84.7
Affected People – – – 51.9 53.4 47.0 57.8 53.2 55.6 47.2 53.6 40.7
Infra. Dam. – – – 84.7 86.2 84.8 84.8 84.6 82.6 84.6 88.0 87.0
Not Hum. – – – 90.3 91.2 90.1 89.0 91.1 89.1 91.6 91.3 91.1
Rescue – – – 55.8 57.3 50.1 59.9 65.2 61.2 52.2 51.2 42.4

Dis. Types 83.2 84.4 83.0 81.9 83.6 81.6 82.2 83.7 82.0 83.2 84.4 83.0
Quake – – – 80.6 82.2 80.1 78.0 79.2 76.3 83.3 85.3 84.3
Fire – – – 80.3 82.5 78.8 77.5 78.2 75.8 83.3 87.2 82.1
Flood – – – 80.2 82.2 80.2 87.5 86.3 84.2 73.9 78.4 76.7
Hurr. – – – 68.1 71.5 68.9 66.8 70.5 68.8 69.4 72.4 69.0
Land. – – – 71.3 70.4 70.4 73.7 65.2 67.5 69.0 76.6 73.5
Not Dis. – – – 90.8 91.5 90.7 88.0 90.2 88.4 93.8 92.8 93.1
Other – – – 24.6 34.4 20.4 57.2 57.5 59.5 15.6 24.5 12.3

RN50: ResNet50, EN-B1: EfficientNet-B1, MN-V2: MobileNet-V2

For each task (in bold), Accuracy (%) is the multi-class classification accuracy, while F1, Precision, and Recall
represent the macro- or weighted-averaged performance across all classes in that task. Best-performing model
scores in each row–metric combination are highlighted in dark green.

When trained on the augmented dataset—including synthetic images—EfficientNet-B1 gen-
erally retains a performance advantage over ResNet50 and MobileNet-V2 across most tasks
and classes. Notably, its macro-averaged F1, precision, and recall scores are especially high for
Damage Severity and Disaster Types, demonstrating that the inclusion of synthetic data can
further enhance model performance. However, ResNet50 continues to outperform in certain
class-specific metrics, such as higher precision or recall for mild and landslide.
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Appendix E: Zero-shot Classification

E.1 Preliminary Prompt Design Experiments

We report here an extensive analysis of our preliminary experiments to establish the best setup
for the zero-shot classification experiment.

E.1.1 Preliminary Experiment Validation Set

For the preliminary experiment, we created a smaller validation set of 500 images with the class
distribution described in Table E.1.

Table E.1: Class Distribution Comparison Between MEDIC Dev Set and Test Subset

Task/Class % in Dev Set Test Subset

Damage Severity
Little Or None 57.1% 256 (51.2%)
Mild 11.0% 61 (12.2%)
Severe 31.9% 183 (36.6%)

Informative
Not Informative 44.2% 203 (40.6%)
Informative 55.8% 297 (59.4%)

Humanitarian
Affected Injured Or Dead People 3.7% 19 (3.8%)
Infrastructure And Utility Damage 39.5% 214 (42.8%)
Not Humanitarian 48.4% 224 (44.8%)
Rescue Volunteering Or Donation Effort 8.5% 43 (8.6%)

Disaster Types
Earthquake 16.7% 82 (16.4%)
Fire 4.7% 32 (6.4%)
Flood 10.5% 55 (11.0%)
Hurricane 10.0% 57 (11.4%)
Landslide 3.1% 22 (4.4%)
Not Disaster 50.6% 231 (46.2%)
Other Disaster 4.4% 21 (4.2%)
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E.1.2 Multimodal Model Performance
Across all tests, GPT-4o and Claude Sonnet show the strongest overall accuracy, followed by
Pixtral Large, Claude Haiku and Pixtral Small. The five prompt styles—Direct Classifica-
tion, Two Phase Analysis, Elimination Reasoning, Uncertainty Aware, and Weighted Option
Analysis—also vary in effectiveness for different classification tasks.

GPT-4o significantly outperforms all other models on the Informative, Humanitarian, and
Disaster Types tasks (p < 0.05). The performance gap between GPT-4o and Claude Sonnet
is statistically significant for all tasks except Damage Severity, where Claude Sonnet (84.2%)
actually outperforms GPT-4o (81.9%), though this difference doesn’t reach statistical signif-
icance. A statistical comparison specifically focusing on the two best-performing models is
reported in Table E.2. Full statistical test results are available in Appendix E.5.2. Claude
Sonnet ranks as the second most capable model, with its highest performance (84.2% overall
accuracy) also achieved via the Direct Classification prompt.

The consistent pattern whereby the most straightforward prompting approach yields bet-
ter results contradicts the initial hypothesis that more elaborate reasoning frameworks would
enhance performance. This finding suggests that excessive prompt complexity may introduce
reasoning bottlenecks, where the model may perhaps second-guess its intuitive classification,
much as a human annotator might.

Task GPT-4o Claude Sonnet Difference p-value

Damage Severity 84.47% (Uncertainty) 84.20% (Direct) 0.27% 0.1757
Informative 91.78% (Direct) 87.40% (Two Phase) 4.38% 0.0046*
Humanitarian 86.41% (Direct) 82.04% (Direct) 4.37% 0.0121*
Disaster Types 88.30% (Direct) 83.15% (Two Phase) 5.15% 0.0011*
* Statistically significant difference (p <0.05)

Table E.2: Statistical Comparison of Best Configurations by Model

Looking at the Damage Severity labels, prompts that encourage a short reflection (for ex-
ample, Two Phase Analysis) often help the model differentiate between “mild” and “severe”
damage, probably because they guide the model to notice partial damage. On the other hand,
the simpler Direct Classification prompt tends to do well with rare categories such as “other
disaster,” as it presents straightforward options without lengthy reasoning steps.

Finally, to statistically validate our results, we calculated bootstrapped confidence intervals,
showing that GPT-4o demonstrates not only high accuracy but also consistent performance (see
Appendix E.1.5 for the analysis). In sum, our preliminary analyses suggests to use GPT-4o as
the overall best-performing model, with Claude 3.5 Sonnet as a valid alternative.

E.1.3 Prompt Performance
For analysing the prompt performance more in detail, we concentrate on the two best-performing
models, GPT-4o and Claude 3.5 Sonnet. Both models show a clear overall advantage with the
simple Direct Classification prompt, which provides explicit category definitions with visual
indicators that models can directly match to image features (see Tables E.3 and E.4).
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Task Prompt Accuracy (%) Accuracy 95% CI∗ F1 (%)

Damage Severity

Direct Classification 82.1 [78.6, 85.5] 74.1
Two Phase Analysis 84.0 [80.7, 87.0] 76.8
Elimination Reasoning 82.2 [78.7, 85.7] 73.3
Uncertainty Aware 84.4 [80.8, 87.4] 78.9
Weighted Option Analysis 80.7 [77.2, 84.0] 72.4

Informative

Direct Classification 91.9 [89.4, 94.2] 91.7
Two Phase Analysis 88.6 [85.6, 91.2] 88.4
Elimination Reasoning 87.7 [84.6, 90.6] 87.4
Uncertainty Aware 89.2 [86.2, 91.8] 88.9
Weighted Option Analysis 88.8 [86.0, 91.4] 88.7

Humanitarian

Direct Classification 86.3 [83.2, 89.2] 76.1
Two Phase Analysis 82.2 [78.6, 85.5] 67.6
Elimination Reasoning 79.5 [76.0, 83.0] 66.5
Uncertainty Aware 84.4 [81.2, 87.6] 72.6
Weighted Option Analysis 79.6 [76.2, 83.6] 60.6

Disaster Types

Direct Classification 88.3 [85.6, 91.2] 83.5
Two Phase Analysis 84.5 [81.0, 87.5] 77.0
Elimination Reasoning 85.6 [82.4, 88.6] 80.8
Uncertainty Aware 86.0 [82.5, 88.8] 80.6
Weighted Option Analysis 86.2 [83.0, 89.2] 80.5

Table E.3: Comparative prompt performance with GPT-4o. The best performing prompt is shown
in bold.

∗Confidence interval obtained via bootstrap resampling.

Statistical significance tests confirm this advantage (p<0.05) for GPT-4o across most tasks,
with Direct Classification significantly outperforming all other prompts except in the Damage
Severity classification task. Appendix E.5.2 provides the statistical test for different prompts
using the best performing models, GPT-4o and Claude Sonnet.

Performance on humanitarian categories displays the most substantial divergence between
accuracy and F1 scores. The affected, injured or dead people category—arguably the most
critical for humanitarian response prioritisation—shows particularly poor performance, with
Claude Sonnet achieving just 58% accuracy. These full, per-class breakdowns are available in
Appendix E.5.1, Table E.8. One reason for this poor performance may be due to ‘soft refusals’,
in which the model explicitly or implicitly avoids referring to human suffering, a constraint
with serious implication for our task and which we will discuss more extensively later.

The Uncertainty Aware prompt generally ranked second in effectiveness, but demonstrated
better performance for GPT-4o on Damage Severity assessment (84%) as shown in Table E.3.
Explicit confidence assessment mechanisms may help models navigate ambiguous classifications,
especially for categories with subjective boundaries. The relatively poor performance of the
Elimination Reasoning prompt across models suggests that overly structured reasoning may
constrain rather than improve visual analysis capabilities. Full, by task breakdowns of results
for each prompt and model are available in Appendix E.5.1.

With this in mind, our goal is to redesign a prompt that keeps the clarity of Direct Clas-
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Task Prompt Accuracy (%) Accuracy 95% CI∗ F1 (%)

Damage Severity

Direct Classification 84.1 [80.6, 87.4] 78.8
Two Phase Analysis 81.0 [77.7, 84.4] 73.2
Elimination Reasoning 78.0 [74.0, 81.8] 70.0
Uncertainty Aware 79.0 [74.9, 82.4] 72.0
Weighted Option Analysis 77.7 [74.1, 81.0] 73.1

Informative

Direct Classification 87.4 [84.2, 90.2] 87.4
Two Phase Analysis 87.4 [84.5, 90.4] 87.5
Elimination Reasoning 83.3 [79.8, 86.4] 84.1
Uncertainty Aware 86.2 [83.2, 89.0] 86.1
Weighted Option Analysis 82.0 [78.7, 85.2] 83.6

Humanitarian

Direct Classification 82.0 [78.6, 85.2] 70.9
Two Phase Analysis 81.4 [78.0, 84.6] 70.0
Elimination Reasoning 75.1 [71.4, 78.6] 67.1
Uncertainty Aware 79.1 [75.7, 82.5] 68.9
Weighted Option Analysis 76.7 [72.7, 80.3] 69.9

Disaster Types

Direct Classification 83.0 [79.6, 86.4] 79.3
Two Phase Analysis 83.2 [80.2, 86.5] 76.7
Elimination Reasoning 80.1 [76.4, 83.4] 75.8
Uncertainty Aware 80.8 [77.3, 84.4] 75.9
Weighted Option Analysis 77.1 [73.6, 80.9] 75.5

Table E.4: Comparative prompt performance with Claude Sonnet. The best performing prompt is
shown in bold.

∗Confidence interval obtained via bootstrap resampling.

sification, to preserve good performance across the broadest set of tasks, while borrowing a
small dose of probability-style reasoning. Statistical analysis supports this hybrid approach, as
we found significant performance differences between prompting strategies (p<0.05), with Di-
rect Classification demonstrating superior performance for most tasks while Uncertainty Aware
excelled specifically at Damage Severity assessment.

E.1.4 Confusion Matrices
The confusion matrices for GPT-4o in Figure E.1 display inter-class confusion patterns that
require clarification in our final classification prompt.

For the Disaster Type category, the matrices demonstrate substantial confusion between
other disaster and not disaster (23% in direct classification), as well as hurricane being mis-
classified as flood (10-15%). In response, we improve category definitions with explicit distin-
guishing criteria—emphasising storm-specific wind damage for hurricanes and clarifying that
other disaster specifically involves human-caused emergencies whilst not disaster completely
lacks emergency aspects.

For the Damage Severity category, the confusion matrices confirm the significant improve-
ment in mild damage classification with the uncertainty-aware approach (55% to 80% accuracy).
We therefore introduce quantitative damage thresholds (10-50% for mild, >50% for severe) and
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functional assessment criteria (habitability, usability) to encourage more deliberate evaluation.
Regarding the Humanitarian category, the matrices indicate confusion between affected

people and not humanitarian (21-26%). We address these patterns by emphasising the human
presence in affected people, clarifying that infrastructure damage applies only when structures
are damaged without people present, and providing explicit prioritisation rules for overlapping
scenarios.

E.1.5 Confidence Intervals

In Table E.5 we calculated bootstrap confidence intervals to confirm the model ranking from
Section E.1.2, here focusing on the Direct Classification prompt.

GPT-4o demonstrates not only high accuracy but also consistent performance, with the nar-
rowest confidence intervals for Informative (89.6%-94.1%) and Disaster Types (85.4%-91.0%)
classification. Claude Sonnet shows particularly reliable performance on Damage Severity as-
sessment, with a tight confidence interval of 80.8%-87.4% compared to GPT-4o’s wider 78.6%-
85.1% interval. In contrast, Pixtral Small exhibits the widest confidence intervals across all
tasks, indicating less consistent performance.

Task Model F1 (%) Accuracy (%) 95% CI

Damage Severity

Claude Haiku 68.8 77.6 [74.0, 81.2]
Claude Sonnet 78.8 84.2 [81.4, 87.2]
GPT-4o 74.1 81.9 [78.5, 85.4]
Pixtral Large 66.8 78.2 [74.6, 81.8]
Pixtral Small 65.6 75.3 [71.4, 78.8]

Informative

Claude Haiku 84.4 84.2 [81.0, 87.2]
Claude Sonnet 87.4 87.5 [84.4, 90.2]
GPT-4o 91.7 91.8 [89.4, 94.0]
Pixtral Large 87.1 87.5 [84.6, 90.4]
Pixtral Small 87.0 87.6 [84.6, 90.2]

Humanitarian

Claude Haiku 70.8 79.2 [75.8, 82.5]
Claude Sonnet 70.9 81.8 [78.4, 84.9]
GPT-4o 76.1 86.5 [83.8, 89.5]
Pixtral Large 71.0 82.8 [79.3, 85.8]
Pixtral Small 61.3 75.0 [71.4, 79.0]

Disaster Types

Claude Haiku 74.8 80.8 [77.5, 84.0]
Claude Sonnet 79.3 83.0 [79.7, 86.2]
GPT-4o 83.5 88.4 [85.3, 91.2]
Pixtral Large 75.0 80.3 [76.7, 83.8]
Pixtral Small 63.6 73.8 [69.8, 77.4]

Table E.5: Comparative model performance with Direct Classification Prompt. The best performing
model is shown in bold. Confidence interval obtained via bootstrap resampling.
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E.1.6 Prompt Processing Time
We show in Table E.6 the average processing times, a crucial quantity for real-time crisis
response, for different prompts and models. Relative times correlate with prompt complexity
and cost. We find that GPT-4o consistently offered the fastest processing, while Pixtral Large
was significantly slower, especially with complex prompts like elimination reasoning.

Table E.6: Average Processing Time (seconds per image).

Model direct two-phase elimination uncertainty weighted
Claude 3.5 Sonnet 0.86 2.00 2.32 0.87 1.29
Claude 3.5 Haiku 1.05 1.79 1.97 1.16 1.14
GPT-4o 0.47 1.54 2.02 0.68 0.88
Pixtral Large 1.67 5.61 7.81 4.16 4.75
Pixtral Small 0.72 1.75 2.25 1.33 1.40

Average processing times (seconds per image) for zero-shot classification across multiple models and prompting
strategies on the MEDIC dataset, using official APIs from the model providers (Anthropic, OpenAI, Mistral
AI). Lower times indicate faster processing. In each column, the best (lowest) time is highlighted in green and
the worst (highest) time in red.
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Figure E.1: Confusion matrices for GPT-4o zero-shot classification using Direct Classification prompt
(left) versus Uncertainty Aware prompt (right).

Disaster Types (Direct Classification)

Predicted
True quake fire flood hurr. land. none other

quake .86 0 .01 0 0 .06 .06
fire 0 .84 0 0 0 .09 .06

flood 0 0 .90 0 0 .07 .01
hurr. .01 0 .10 .70 0 .14 .03
land. 0 0 .04 0 .81 .09 .04
none .00 .00 0 0 .00 .96 .01
other 0 .04 .04 0 0 .23 .66

Disaster Types (Uncertainty Aware)

Predicted
True quake fire flood hurr. land. none other

quake .86 .01 .01 0 0 .04 .06
fire 0 .87 0 0 0 .06 .06

flood 0 0 .94 0 0 .05 0
hurr. 0 0 .15 .71 0 .07 .05
land. 0 0 .04 0 .81 .09 .04
none .01 .01 .00 .01 .00 .90 .04
other 0 .04 .04 0 0 .38 .52

Informativeness (Direct Classification)

Predicted
True not inf inf

not inf .88 .11
inf .02 .97

Informativeness (Uncertainty Aware)

Predicted
True not inf inf

not inf .88 .11
inf .09 .90

Humanitarian (Direct Classification)

Predicted
True affected infra not hum rescue

affected .63 .10 .26 0
infra .04 .83 .08 .02

not hum .00 .02 .93 .02
rescue .04 .06 .16 .72

Humanitarian (Uncertainty Aware)

Predicted
True affected infra not hum rescue

affected .63 .15 .21 0
infra .04 .86 .07 .02

not hum .00 .06 .89 .03
rescue .09 .18 .13 .58

Damage Severity (Direct Classification)

Predicted
True none mild severe

none .96 .03 .00
mild .39 .55 .04

severe .13 .16 .70

Damage Severity (Uncertainty Aware)

Predicted
True none mild severe

none .88 .10 .01
mild .08 .80 .11

severe .02 .16 .80

The matrices reveal significant performance shifts, most notably the improvement in mild damage severity
classification (from 55% to 80%) and flood identification (90% to 94%). Certain categories deteriorated, partic-
ularly other disaster (66% to 52%) with increased confusion with not disaster, and rescue volunteering (72% to
58%). Dark blue cells indicate correct classifications, light blue cells show mediocre performance, and red cells
highlight problematic misclassifications.
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E.2 Prompts Tested

Direct Classification Prompt

As a Humanitarian Crisis Image Analyst, examine this image and provide your
assessment. Some images may show actual disasters while others may show normal
scenes with no disaster present. First, analyze what you see, then classify it
according to standard humanitarian response categories.

<analysis>
Examine the image carefully and describe what you see related to potential disaster,

damage, humanitarian concerns, and informativeness. If no disaster is present,
simply describe what you see in the image. Don’t mention specific label
categories yet, just describe what’s visually present.

</analysis>

Now, based on your analysis, classify this image according to these categories:

1. DISASTER TYPE:
- earthquake: damaged/destroyed buildings, fractured houses, ground ruptures
- fire: man-made fires or wildfires, destroyed forests, houses, infrastructures
- flood: flooded areas, houses, roads, other infrastructures
- hurricane: high winds, storm surge, heavy rains, collapsed electricity polls,
grids, trees
- landslide: landslide, mudslide, landslip, rockfall, rockslide, earth slip, land

collapse
- not disaster: cartoon, advertisement, or anything not easily linked to any
disaster type
- other disaster: plane crash, bus/car/train accident, explosion, war, conflicts

2. DAMAGE SEVERITY:
- severe: substantial destruction making infrastructure non-livable/non-usable
- mild: partially destroyed buildings/bridges/houses/roads (approximately up to
50% damage)
- little or none: damage-free infrastructure (except for normal wear and tear)

3. INFORMATIVENESS:
- informative: useful for humanitarian aid
- not informative: not useful for humanitarian aid (ads, logos, cartoons, blurred

images)

4. HUMANITARIAN CATEGORY:
- affected injured or dead people: shows injured, dead, or affected people
- infrastructure and utility damage: shows built structures affected/damaged
- not humanitarian: not relevant for humanitarian aid
- rescue volunteering or donation effort: shows rescue, volunteering, or response
efforts

86



<labels>
{

"disaster type": "",
"damage severity": "",
"informative": "",
"humanitarian": ""

}
</labels>

Figure E.2: Direct Classification prompt for zero-shot disaster image classification
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Two Phase Analysis Prompt

As a Humanitarian Crisis Image Analyst, your task is to classify this image to
support emergency response decisions. Note that some images may show actual
disasters while others may show normal scenes with no disaster present. Complete
this process in two phases:

<analysis>
1. OBSERVATION: Briefly describe what you see in this image (3-5 sentences, focusing

on visible elements).

2. ASSESSMENT: For each category, assess the possible classifications:
- DISASTER TYPE: What type of disaster is shown, if any? If no disaster is
present, indicate this clearly.
- DAMAGE SEVERITY: How severe is any visible damage to structures or
infrastructure?
- INFORMATIVENESS: Would this image be useful for humanitarian response?
- HUMANITARIAN CATEGORY: What is the primary humanitarian concern shown, if any?

3. CONFIDENCE: For each category, indicate your confidence level (high/medium/low)
and why.

</analysis>

Now, based solely on your analysis above, classify this image with EXACTLY ONE
category for each task:

<labels>
{

"disaster type": "",
"damage severity": "",
"informative": "",
"humanitarian": ""

}
</labels>

Figure E.3: Two Phase Analysis prompt for zero-shot disaster image classification
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Elimination Reasoning Prompt

As a Humanitarian Crisis Image Analyst, evaluate this image using a systematic
elimination approach to support response prioritization. Note that some images
may show actual disasters while others may show normal scenes with no disaster
present. Complete your analysis within the analysis tags, and then provide your
final classification.

<analysis>
1. KEY ELEMENTS: List the key visible elements in this image (buildings, people,

water, fire, etc.)

2. SYSTEMATIC EVALUATION:

DISASTER TYPE:
- Earthquake evidence:
- Fire evidence:
- Flood evidence:
- Hurricane evidence:
- Landslide evidence:
- Not disaster evidence:
- Other disaster evidence:
- Reasoning and elimination process: [explain which options you’re eliminating and

why]

DAMAGE SEVERITY:
- Severe evidence:
- Mild evidence:
- Little or none evidence:
- Reasoning and elimination process: [explain which options you’re eliminating and

why]

INFORMATIVENESS:
- Informative evidence:
- Not informative evidence:
- Reasoning and elimination process: [explain which options you’re eliminating and

why]

HUMANITARIAN CATEGORY:
- Affected/injured/dead people evidence:
- Infrastructure/utility damage evidence:
- Not humanitarian evidence:
- Rescue/volunteering/donation evidence:
- Reasoning and elimination process: [explain which options you’re eliminating and

why]
</analysis>

Based strictly on your analysis above, provide your final classification:
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<labels>
{

"disaster type": "",
"damage severity": "",
"informative": "",
"humanitarian": ""

}
</labels>

Figure E.4: Elimination Reasoning prompt for zero-shot disaster image classification
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Uncertainty Aware Prompt

As a Humanitarian Crisis Image Analyst with field experience, analyze this image
with attention to certainty levels. Note that some images may show actual
disasters while others may show normal scenes with no disaster present. First
complete your entire analysis, then provide only the final labels.

<analysis>
1. IMAGE DESCRIPTION: Describe what you see in the image (1-3 sentences).

2. CLASSIFICATION WITH CONFIDENCE:

DISASTER TYPE:
- Options: earthquake, fire, flood, hurricane, landslide, not disaster, other

disaster
- My assessment: [explain what disaster type you believe is shown and why]
- Confidence (0-100%): [percentage]
- Uncertainty factors: [if confidence is <70%, explain what makes this

classification difficult]

DAMAGE SEVERITY:
- Options: little or none, mild, severe
- My assessment: [explain what level of damage you see and why]
- Confidence (0-100%): [percentage]
- Uncertainty factors: [if confidence is <70%, explain what makes this

classification difficult]

INFORMATIVENESS:
- Options: informative, not informative
- My assessment: [explain whether this is informative for humanitarian response and

why]
- Confidence (0-100%): [percentage]
- Uncertainty factors: [if confidence is <70%, explain what makes this

classification difficult]

HUMANITARIAN CATEGORY:
- Options: affected injured or dead people, infrastructure and utility damage, not

humanitarian, rescue volunteering or donation effort
- My assessment: [explain what humanitarian category is most prominent and why]
- Confidence (0-100%): [percentage]
- Uncertainty factors: [if confidence is <70%, explain what makes this

classification difficult]

3. FINAL DETERMINATION:
For any categories with low confidence, provide additional reasoning to reach a

final decision.
</analysis>
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Based on your complete analysis, provide your final classification:

<labels>
{

"disaster type": "",
"damage severity": "",
"informative": "",
"humanitarian": ""

}
</labels>

Figure E.5: Uncertainty Aware prompt for zero-shot disaster image classification
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Weighted Option Analysis Prompt

As a Humanitarian Crisis Image Analyst trained in probability assessment, evaluate
this image using quantitative confidence ratings. Note that some images may show
actual disasters while others may show normal scenes with no disaster present.

First provide your detailed analysis, then give only your final classifications.

<analysis>
1. IMAGE DESCRIPTION: Briefly describe what you see in the image.

2. PROBABILITY ASSESSMENT: For each category, assign a probability percentage to
each option based on visual evidence (ensure percentages sum to 100% per
category):

DISASTER TYPE:
- earthquake: % (damaged buildings, ground ruptures)
- fire: % (flames, smoke, burned structures/forests)
- flood: % (water inundation of normally dry areas)
- hurricane: % (wind damage, fallen trees/poles)
- landslide: % (earth/mud/rock displacement)
- not disaster: % (unrelated to disasters)
- other disaster: % (accidents, explosions, conflicts)

DAMAGE SEVERITY:
- severe: % (infrastructure non-functional/non-usable)
- mild: % (partial damage, ˜50% destruction)
- little or none: % (minimal/no visible damage)

INFORMATIVENESS:
- informative: % (useful for humanitarian response)
- not informative: % (not useful for response)

HUMANITARIAN CATEGORY:
- affected injured or dead people: % (showing impacted people)
- infrastructure and utility damage: % (damaged structures/utilities)
- not humanitarian: % (not relevant to humanitarian aid)
- rescue volunteering or donation effort: % (showing response activities)

3. JUSTIFICATION: For each highest-probability selection, provide a brief
justification (1-2 sentences).

4. UNCERTAINTY RESOLUTION: If you have any categories where two options have similar
probabilities (within 15% of each other), explain your final decision process.

</analysis>

Based on your analysis, provide your final classification with the highest
probability option for each category:
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<labels>
{

"disaster type": "",
"damage severity": "",
"informative": "",
"humanitarian": ""

}
</labels>

Figure E.6: Weighted Option Analysis prompt for zero-shot disaster image classification
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E.3 Final Zero-Shot Classification Prompt

As a Humanitarian Crisis Image Analyst, examine this image and provide your
assessment. Some images may show actual disasters while others may show normal
scenes with no disaster present. First, analyze what you see, then classify it
according to standard humanitarian response categories.

<analysis>
Examine the image carefully and describe what you see related to potential disaster,

damage, humanitarian concerns, and informativeness. Focus specifically on:
1. Any visible damage or functional disruption to structures, landscapes, or

infrastructure
2. Whether people are present, and if so, their condition, activities, and how they

appear to be affected
3. Signs that indicate the specific type of disaster (if any)
4. Overall clarity and relevance of the image for humanitarian response

Be thorough and descriptive without mentioning specific label categories yet.
</analysis>

Now, based on your analysis, classify this image according to these categories:

1. DISASTER TYPE:
- earthquake: damaged/destroyed buildings with characteristic structural collapse

patterns, fractured houses, visible cracks in walls/foundations, ground
ruptures
- fire: active flames, smoke, charred/blackened buildings or forests, burned
debris
- flood: standing water covering roads/fields/urban areas, water marks on
buildings, people wading through water
- hurricane: downed trees, roof damage, debris scattered by wind, power lines
down, storm surge effects
- landslide: displaced soil/rocks, buried structures, visible slope failure, mud
flows, blocked roads
- not disaster: EVERYDAY SCENES without disaster evidence, cartoons,
advertisements - if you’re uncertain whether something qualifies as a disaster,
choose a specific disaster type rather than not disaster
- other disaster: transportation accidents (plane/bus/car/train), explosions, war

damage, conflicts, industrial accidents

2. DAMAGE SEVERITY:
Look carefully at infrastructure and assess BOTH structural damage AND functional

impact:
- severe: substantial destruction OR major functional impairment (collapsed walls
, exposed interior, missing roofs, completely flooded areas, completely
impassable roads)
- mild: ANY partial damage OR functional limitation (visible cracks, broken
windows, damaged roofs, partially flooded areas, partially blocked roads)
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- little or none: fully intact structures with only cosmetic damage AND no
significant functional impairment

*Important: If there is ANY impact on the usability or function of infrastructure
, even if the structure appears intact, classify as at least "mild"*

3. INFORMATIVENESS:
- informative: contains clear, useful visual information for humanitarian aid
assessment or response
- not informative: blurry, artistic, promotional, or lacks clear disaster-
relevant content (ads, logos, cartoons, symbolic images)

4. HUMANITARIAN CATEGORY:
Use these clear distinguishing criteria for classification:

- affected injured or dead people: Shows INDIVIDUALS in distress or directly
impacted. Look for:

* People with visible injuries, receiving medical attention, or deceased
* Civilians being evacuated, rescued, or in obvious distress
* People in temporary shelters, receiving aid, or displaced
* Close-up focus on human suffering or individual impact

- infrastructure and utility damage: Shows PHYSICAL DAMAGE as the main focus.
Look for:

* Damaged buildings, roads, bridges, or utilities WITHOUT people as the main
subject

* Debris, rubble, or destroyed property with no individuals prominently
featured

* Aerial or wide shots of damaged areas where infrastructure is the primary
subject

* People may be present but only as small figures that aren’t the main focus

- rescue volunteering or donation effort: Shows ORGANIZED RESPONSE efforts. Look
for:

* Uniformed personnel (firefighters, medical staff, military, etc.) actively
responding

* Emergency vehicles, equipment, or organized rescue operations
* Coordinated aid distribution, volunteer efforts, or donation activities
* Focus on the responders and their equipment/activities rather than victims

- not humanitarian: NO CLEAR DISASTER IMPACT or response needs. Look for:
* Scenes unrelated to disasters or humanitarian needs
* No visible damage, affected people, or response activities
* Normal daily activities, undamaged structures, or scenic views
* Promotional content, advertisements, or symbolic imagery

*Important: If you see injured or affected people AND organized responders in the
same image, look at what the image is primarily focusing on - the people being
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helped or the responders providing help*

In the <labels> section below, fill in ONLY the exact category names from the lists
above. Do not include any brackets, explanations, or additional text. Use only

the exact values listed for each category (e.g., "earthquake", "severe", "
informative", "infrastructure and utility damage").

<labels>
{

"disaster type": "",
"damage severity": "",
"informative": "",
"humanitarian": ""

}
</labels>

Figure E.7: Final Prompt used for Zero-Shot Classification Test
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E.4 Fallback Prompts

I understand your caution with potentially sensitive content. To clarify, this is a
legitimate academic research project on disaster classification. Your assessment
will be used solely for evaluating ML classification systems that can help

humanitarian organizations respond more effectively to disasters.

Please classify this image according to the four categories requested (disaster type
, damage severity, informative, humanitarian). Remember that "not disaster" and "
not humanitarian" are perfectly valid classifications if the image shows a
normal scene. If this is not a disaster image, you can and should classify it
accordingly rather than refusing to analyze it.

Please complete your analysis using the <analysis> and <labels> format as
requested earlier.

Figure E.8: First fallback prompt for initial model refusal in disaster image classification

I understand your hesitation. To clarify: analyzing this image for disaster
classification is part of an academic research project with ethical approval.
The classification options already include categories for non-disaster images
and non-humanitarian content.

Rather than refusing completely, please approach this as a technical classification
task. At minimum, please determine whether this is a disaster or non-disaster
image, and complete the classification using the <analysis> and <labels>
format.

If the image contains no disaster, simply classify it as "not disaster" - this is
valuable information for the research.

Figure E.9: Second fallback prompt for continued model refusal in disaster image classification
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E.5 Expanded Initial Prompt/Model Testing Results

E.5.1 Zero-Shot Small-Scale Test Results by Vision Model

Table E.7: Classification performance (Accuracy and F1 scores) for GPT-4V across prompts

Task / Class
Direct

Classification
Two Phase

Analysis
Elimination
Reasoning

Uncertainty
Aware

Weighted
Option Analysis

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Damage Severity 82.0 74.1 84.0 76.8 82.2 73.3 84.4 78.9 80.8 72.4
Little Or None 96.5 89.7 94.1 92.3 93.0 89.5 88.3 91.9 94.1 88.8
Mild 55.7 51.1 63.9 54.5 47.5 46.0 80.3 58.7 50.8 46.6
Severe 70.5 81.6 76.5 83.6 78.7 84.5 80.3 86.2 72.1 81.7

Informative 91.9 91.7 88.6 88.4 87.6 87.4 89.2 88.9 88.8 88.7
Not Informative 97.0 90.6 91.1 86.7 89.2 85.4 90.6 87.2 94.6 87.3
Informative 88.2 92.7 86.9 90.1 86.5 89.4 88.2 90.7 84.8 90.2

Humanitarian 86.5 76.1 82.2 67.6 79.6 66.5 84.4 72.6 79.6 60.6
Affected/ Injured People 63.2 53.3 57.9 44.0 36.8 37.8 63.2 52.2 21.1 25.8
Infrastructure Damage 83.6 88.6 84.6 86.0 72.9 81.2 86.4 87.3 78.5 84.0
Not Humanitarian 93.8 90.3 88.8 87.9 92.4 84.8 89.3 89.1 91.1 86.3
Rescue/ Volunteering Effort 72.1 72.1 46.5 52.6 65.1 62.2 58.1 61.7 51.2 46.3

Disaster Types 88.4 83.5 84.4 77.0 85.6 80.8 86.0 80.6 86.2 80.5
Earthquake 86.6 91.0 76.8 85.7 87.8 92.3 86.6 91.0 87.8 89.4
Fire 84.4 87.1 84.4 85.7 87.5 90.3 87.5 86.2 90.6 86.6
Flood 90.9 87.7 89.1 85.2 85.5 83.9 94.5 86.0 92.7 86.4
Hurricane 70.2 82.5 61.4 74.5 66.7 76.0 71.9 81.2 75.4 80.4
Landslide 81.8 87.8 81.8 87.8 81.8 90.0 81.8 87.8 81.8 85.7
Not Disaster 96.1 92.5 96.5 90.7 93.1 88.8 90.5 90.3 90.5 90.1
Other Disaster 66.7 56.0 33.3 29.2 47.6 44.4 52.4 41.5 42.9 45.0

OVERALL 87.2 81.4 84.8 77.4 83.8 77.0 86.0 80.2 83.9 75.6

Classification performance (Accuracy and F1 scores) for GPT-4V across different prompting strategies. The
highest-performing prompt per row is highlighted in green.
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Table E.8: Classification performance (Accuracy and F1 scores) for Claude Sonnet across prompts

Task / Class
Direct

Classification
Two Phase

Analysis
Elimination
Reasoning

Uncertainty
Aware

Weighted
Option Analysis

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Damage Severity 84.2 78.8 81.0 73.2 78.0 70.0 79.0 72.0 77.6 73.1
Little Or None 90.6 90.4 88.3 89.2 85.2 86.0 83.6 86.6 82.8 85.8
Mild 67.2 60.3 50.8 47.3 41.0 41.7 52.5 47.8 55.7 51.1
Severe 80.9 85.5 80.9 83.1 80.3 82.4 81.4 81.6 77.6 82.3

Informative 87.4 87.4 87.4 87.5 83.2 84.1 86.2 86.1 82.0 83.6
Not Informative 85.2 84.8 86.7 85.0 84.2 80.5 80.3 82.7 79.3 79.1
Informative 88.9 89.9 87.9 90.0 82.5 87.7 90.2 89.5 83.8 88.1

Humanitarian 82.0 70.9 81.4 70.0 75.0 67.1 79.0 68.9 76.6 69.9
Affected/ Injured People 42.1 44.4 42.1 45.7 57.9 42.3 47.4 42.9 57.9 51.2
Infrastructure Damage 83.6 86.9 87.9 88.1 67.3 79.3 78.5 84.6 77.6 84.7
Not Humanitarian 83.9 84.9 78.1 84.1 82.6 79.6 80.4 82.0 76.3 80.1
Rescue/ Volunteering Effort 81.4 67.3 83.7 62.1 81.4 67.3 88.4 66.1 81.4 63.6

Disaster Types 83.0 79.3 83.2 76.7 80.0 75.8 80.6 75.9 77.0 75.5
Earthquake 75.6 83.8 81.7 86.5 79.3 86.1 73.2 83.3 75.6 82.7
Fire 84.4 90.0 87.5 83.6 84.4 90.0 84.4 85.7 81.2 85.2
Flood 90.9 85.5 90.9 82.6 81.8 84.1 90.9 82.6 85.5 81.0
Hurricane 77.2 80.7 75.4 81.9 82.5 83.9 84.2 82.8 75.4 78.2
Landslide 77.3 85.0 72.7 80.0 54.5 68.6 63.6 77.8 63.6 77.8
Not Disaster 87.4 87.8 88.7 88.2 84.8 82.9 84.0 85.5 78.4 82.1
Other Disaster 61.9 42.6 33.3 34.1 38.1 34.8 47.6 33.9 57.1 41.4

OVERALL 84.2 79.1 83.2 76.9 79.0 74.2 81.2 75.7 78.3 75.5

Classification performance (Accuracy and F1 scores) for Claude Sonnet model across different prompting strate-
gies. The highest-performing prompt per row is highlighted in green.
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Table E.9: Classification performance (Accuracy and F1 scores) for Claude Haiku across prompts

Task / Class
Direct

Classification
Two Phase

Analysis
Elimination
Reasoning

Uncertainty
Aware

Weighted
Option Analysis

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Damage Severity 77.6 68.8 78.6 69.5 77.4 66.8 78.2 69.8 73.4 65.4
Little Or None 89.8 88.0 87.9 88.8 88.3 86.6 85.2 88.1 79.7 83.8
Mild 44.3 40.9 41.0 38.8 32.8 33.6 47.5 40.3 36.1 33.3
Severe 71.6 77.5 78.1 81.0 77.0 80.1 78.7 81.1 77.0 79.2

Informative 84.2 84.4 82.2 82.8 68.8 61.4 80.4 80.2 79.2 80.4
Not Informative 85.7 81.7 85.7 80.0 29.6 43.6 76.4 76.2 75.4 75.4
Informative 83.2 87.1 79.8 85.6 95.6 79.1 83.2 84.2 81.8 85.4

Humanitarian 79.2 70.8 74.0 60.3 75.0 65.3 76.0 66.6 69.4 57.3
Affected/ Injured People 68.4 49.1 36.8 32.6 57.9 44.9 63.2 43.6 57.9 31.9
Infrastructure Damage 77.6 83.0 79.4 81.1 70.6 78.6 74.3 81.7 69.6 77.2
Not Humanitarian 83.0 82.9 76.3 78.1 83.5 79.4 78.6 79.5 75.9 77.1
Rescue/ Volunteering Effort 72.1 68.1 51.2 49.4 60.5 58.4 76.7 61.7 39.5 43.0

Disaster Types 80.8 74.8 78.2 70.2 79.2 72.1 80.8 74.5 75.8 72.1
Earthquake 67.1 79.7 70.7 81.1 74.4 82.4 78.0 85.9 78.0 76.2
Fire 87.5 88.9 87.5 88.9 84.4 87.1 87.5 88.9 84.4 85.7
Flood 85.5 84.7 81.8 82.6 74.5 79.6 74.5 77.4 78.2 77.5
Hurricane 61.4 72.9 63.2 72.0 64.9 73.3 66.7 75.2 63.2 72.0
Landslide 63.6 65.1 59.1 61.9 50.0 61.1 54.5 68.6 50.0 62.9
Not Disaster 93.5 85.9 90.0 82.4 92.2 83.4 92.6 84.6 81.8 82.0
Other Disaster 42.9 46.2 14.3 22.2 28.6 37.5 33.3 41.2 42.9 48.6

OVERALL 80.5 74.7 78.2 70.7 75.1 66.4 78.9 72.8 74.5 68.8

Classification performance (Accuracy and F1 scores) for Claude Haiku model across different prompting strate-
gies. The highest-performing prompt per row is highlighted in green.
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Table E.10: Classification performance (Accuracy and F1 scores) for Pixtral Small across prompts

Task / Class
Direct

Classification
Two Phase

Analysis
Elimination
Reasoning

Uncertainty
Aware

Weighted
Option Analysis

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Damage Severity 75.2 65.6 76.4 66.9 77.8 66.1 73.6 66.7 77.8 62.8
Little Or None 91.4 88.6 89.8 88.8 87.1 88.7 77.0 85.1 89.8 88.1
Mild 45.9 36.4 45.9 36.8 31.1 30.9 57.4 38.5 18.0 22.0
Severe 62.3 71.9 67.8 75.2 80.3 78.6 74.3 76.6 80.9 78.3

Informative 87.6 87.0 84.0 83.6 75.4 72.8 86.2 85.5 86.6 86.4
Not Informative 78.3 83.9 84.2 81.0 54.7 64.3 79.3 82.4 90.6 84.6
Informative 93.9 90.0 83.8 86.2 89.6 81.2 90.9 88.7 83.8 88.1

Humanitarian 75.0 61.3 71.0 56.0 70.8 52.9 72.6 60.5 74.0 52.9
Affected/ Injured People 73.7 31.8 57.9 23.7 31.6 20.0 68.4 32.5 68.4 29.2
Infrastructure Damage 70.1 77.5 65.9 76.0 60.3 70.7 72.9 77.0 72.4 78.5
Not Humanitarian 84.8 86.6 83.5 81.0 91.5 81.3 75.9 80.4 87.9 85.1
Rescue/ Volunteering Effort 48.8 49.4 37.2 43.2 32.6 39.4 55.8 52.2 11.6 18.9

Disaster Types 73.8 63.6 73.6 63.2 76.6 62.4 76.2 66.6 79.2 68.8
Earthquake 46.3 62.8 56.1 71.3 76.8 72.8 70.7 76.3 73.2 80.0
Fire 93.8 84.5 84.4 84.4 90.6 82.9 87.5 78.9 93.8 85.7
Flood 83.6 70.8 72.7 76.2 80.0 79.3 78.2 76.1 83.6 76.7
Hurricane 56.1 69.6 42.1 57.8 38.6 53.7 71.9 77.4 59.6 71.6
Landslide 40.9 40.0 36.4 43.2 40.9 50.0 40.9 48.6 31.8 42.4
Not Disaster 87.4 88.4 92.2 85.5 92.6 86.6 84.4 84.1 90.0 87.9
Other Disaster 57.1 28.9 47.6 23.8 9.5 11.8 33.3 24.6 52.4 37.3

OVERALL 77.9 69.4 76.2 67.4 75.2 63.5 77.2 69.8 79.4 67.7

Classification performance (Accuracy and F1 scores) for Pixtral Small model across different prompting strate-
gies. The highest-performing prompt per row is highlighted in green.
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Table E.11: Classification performance (Accuracy and F1 scores) for Pixtral Large across prompts

Task / Class
Direct

Classification
Two Phase

Analysis
Elimination
Reasoning

Uncertainty
Aware

Weighted
Option Analysis

Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)

Damage Severity 78.2 66.8 81.0 73.0 79.0 69.8 76.0 63.3 76.2 67.7
Little Or None 94.1 88.6 89.1 89.6 91.4 88.1 82.4 88.1 84.0 87.8
Mild 34.4 35.0 52.5 48.5 44.3 42.9 24.6 25.9 49.2 37.3
Severe 70.5 76.8 79.2 81.0 73.2 78.4 84.2 76.0 74.3 77.9

Informative 87.4 87.1 86.8 86.4 83.0 82.5 87.0 86.3 87.6 87.2
Not Informative 88.2 85.0 83.3 83.7 78.8 79.2 79.3 83.2 86.7 85.0
Informative 86.9 89.1 89.2 89.1 85.9 85.7 92.3 89.4 88.2 89.4

Humanitarian 82.8 71.0 78.6 67.9 79.2 68.1 80.8 67.5 79.0 63.8
Affected/ Injured People 52.6 47.6 57.9 50.0 47.4 46.2 36.8 38.9 47.4 43.9
Infrastructure Damage 83.2 86.6 84.1 84.7 72.4 80.9 89.3 87.8 85.5 84.9
Not Humanitarian 87.5 86.7 75.9 82.3 91.1 84.0 75.9 82.9 81.7 84.7
Rescue/ Volunteering Effort 69.8 63.2 74.4 54.7 65.1 61.5 83.7 60.5 46.5 41.7

Disaster Types 80.4 75.0 80.4 75.5 80.0 71.9 80.6 76.1 78.8 71.6
Earthquake 76.8 80.8 82.9 88.3 85.4 84.8 82.9 84.5 87.8 81.8
Fire 81.2 82.5 84.4 83.1 81.2 85.2 87.5 86.2 93.8 85.7
Flood 80.0 82.2 85.5 77.7 80.0 81.5 83.6 80.7 87.3 75.6
Hurricane 77.2 80.7 75.4 79.6 61.4 70.0 77.2 77.9 59.6 64.2
Landslide 63.6 71.8 63.6 73.7 54.5 66.7 72.7 82.1 68.2 71.4
Not Disaster 85.3 86.2 81.4 85.6 89.2 85.5 81.8 85.7 81.0 86.0
Other Disaster 66.7 40.6 71.4 40.5 33.3 29.8 57.1 35.8 38.1 36.4

OVERALL 82.2 75.0 81.7 75.7 80.3 73.1 81.1 73.3 80.4 72.6

Classification performance (Accuracy and F1 scores) for Pixtral Large model across different prompting strate-
gies. The highest-performing prompt per row is highlighted in green.
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E.5.2 Statistical Significance Testing

Task Comparison p-value Superior Model

Damage Severity

Claude Haiku vs Claude Sonnet 0.0000 Claude Sonnet
Claude Haiku vs GPT-4o 0.0269 GPT-4o
Claude Sonnet vs Pixtral Large 0.0018 Claude Sonnet
Claude Sonnet vs Pixtral Small 0.0000 Claude Sonnet
GPT-4o vs Pixtral Large 0.0327 GPT-4o
GPT-4o vs Pixtral Small 0.0006 GPT-4o

Informative

Claude Haiku vs Claude Sonnet 0.0450 Claude Sonnet
Claude Haiku vs GPT-4o 0.0000 GPT-4o
Claude Sonnet vs GPT-4o 0.0036 GPT-4o
GPT-4o vs Pixtral Large 0.0050 GPT-4o
GPT-4o vs Pixtral Small 0.0244 GPT-4o

Humanitarian

Claude Haiku vs GPT-4o 0.0001 GPT-4o
Claude Haiku vs Pixtral Small 0.0423 Claude Haiku
Claude Sonnet vs GPT-4o 0.0121 GPT-4o
Claude Sonnet vs Pixtral Small 0.0008 Claude Sonnet
GPT-4o vs Pixtral Small 0.0000 GPT-4o
Pixtral Large vs Pixtral Small 0.0002 Pixtral Large

Disaster Types

Claude Haiku vs GPT-4o 0.0000 GPT-4o
Claude Haiku vs Pixtral Small 0.0004 Claude Haiku
Claude Sonnet vs GPT-4o 0.0006 GPT-4o
Claude Sonnet vs Pixtral Small 0.0000 Claude Sonnet
GPT-4o vs Pixtral Large 0.0000 GPT-4o
GPT-4o vs Pixtral Small 0.0000 GPT-4o
Pixtral Large vs Pixtral Small 0.0016 Pixtral Large

Table E.12: Statistically significant differences between models, using McNemar tests on the Direct
Classification prompt results

104



Task Comparison p-value Superior Prompt

Damage Severity Uncertainty Aware vs Weighted Option Analysis 0.0282 Uncertainty Aware
Two Phase Analysis vs Weighted Option Analysis 0.0450 Two Phase Analysis

Informative

Direct Classification vs Elimination Reasoning 0.0018 Direct Classification
Direct Classification vs Two Phase Analysis 0.0046 Direct Classification
Direct Classification vs Weighted Option Analysis 0.0051 Direct Classification
Direct Classification vs Uncertainty Aware 0.0311 Direct Classification

Humanitarian

Direct Classification vs Elimination Reasoning 0.0001 Direct Classification
Direct Classification vs Weighted Option Analysis 0.0000 Direct Classification
Direct Classification vs Two Phase Analysis 0.0070 Direct Classification
Elimination Reasoning vs Uncertainty Aware 0.0067 Uncertainty Aware
Uncertainty Aware vs Weighted Option Analysis 0.0035 Uncertainty Aware

Disaster Types
Direct Classification vs Two Phase Analysis 0.0011 Direct Classification
Direct Classification vs Elimination Reasoning 0.0303 Direct Classification
Direct Classification vs Uncertainty Aware 0.0446 Direct Classification

Table E.13: Statistically significant differences between prompts, using McNemar tests on GPT-4o
results

Task Comparison p-value Superior Prompt

Damage Severity

Direct Classification vs Two Phase Analysis 0.0150 Direct Classification
Direct Classification vs Elimination Reasoning 0.0000 Direct Classification
Direct Classification vs Uncertainty Aware 0.0002 Direct Classification
Direct Classification vs Weighted Option Analysis 0.0000 Direct Classification
Two Phase Analysis vs Weighted Option Analysis 0.0372 Two Phase Analysis

Informative

Direct Classification vs Elimination Reasoning 0.0060 Direct Classification
Direct Classification vs Weighted Option Analysis 0.0001 Direct Classification
Two Phase Analysis vs Elimination Reasoning 0.0060 Two Phase Analysis
Two Phase Analysis vs Weighted Option Analysis 0.0001 Two Phase Analysis
Uncertainty Aware vs Weighted Option Analysis 0.0070 Uncertainty Aware

Humanitarian

Direct Classification vs Elimination Reasoning 0.0001 Direct Classification
Direct Classification vs Uncertainty Aware 0.0411 Direct Classification
Direct Classification vs Weighted Option Analysis 0.0005 Direct Classification
Two Phase Analysis vs Elimination Reasoning 0.0014 Two Phase Analysis
Two Phase Analysis vs Weighted Option Analysis 0.0046 Two Phase Analysis
Elimination Reasoning vs Uncertainty Aware 0.0232 Uncertainty Aware

Disaster Types

Direct Classification vs Weighted Option Analysis 0.0001 Direct Classification
Two Phase Analysis vs Elimination Reasoning 0.0237 Two Phase Analysis
Two Phase Analysis vs Uncertainty Aware 0.0485 Two Phase Analysis
Two Phase Analysis vs Weighted Option Analysis 0.0002 Two Phase Analysis
Uncertainty Aware vs Weighted Option Analysis 0.0282 Uncertainty Aware

Table E.14: Statistically significant differences between prompts, using McNemar tests on Claude
Sonnet results
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Task Model Best Prompt Accuracy (%) 95% CI

Damage Severity GPT-4o Uncertainty Aware 84.47 [81.50, 87.80]
Claude Sonnet Direct Classification 84.20 [80.80, 87.51]

Informative GPT-4o Direct Classification 91.78 [89.40, 94.00]
Claude Sonnet Two Phase Analysis 87.40 [84.60, 90.20]

Humanitarian GPT-4o Direct Classification 86.41 [83.20, 89.51]
Claude Sonnet Direct Classification 82.04 [78.50, 85.60]

Disaster Types GPT-4o Direct Classification 88.30 [85.40, 91.20]
Claude Sonnet Two Phase Analysis 83.15 [79.80, 86.51]

Table E.15: Comparative Performance of Best Prompts by Model
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